Show simple item record

dc.contributor.authorHart, Alan D.
dc.date.accessioned2016-05-09T20:24:20Zen
dc.date.available2016-05-09T20:24:20Zen
dc.date.issued1999-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/608741en
dc.descriptionInternational Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevadaen_US
dc.description.abstractThis paper briefly reports on concepts for hardening (physically toughening) crystal reference oscillators for the highly integrated program known as HSTSS. Within the HSTSS program is the L & S band transmitter development contract. The harshest requirements for this contract are surviving and functioning, to within 20 ppm of its center frequency, 30 ms after sustaining a shock pulse of 100,000 (g) for 0.5 ms on any axis. Additional requirements call for the transmitter to be no larger than 0.2 in3, and to operate within a 20 ppm frequency stability throughout the temperature range of -400 to +850 centigrade and during centrifugal spins of up to 300 Hz or 25,000 (g). Fundamentally the question is, is it feasible for any telemetry system to be capable of withstanding such harsh conditions and, to be practical on all DoD Test Ranges, still adhere to the stability tolerance guidelines set forth by the Range Commanders Council on Telemetry Standards - IRIG 106-96? Under "normal" conditions, stability requirements for "Range" transmitters are easily satisfied through the use of off-the-shelf crystal reference oscillators which provide the reference frequencies required within a transmitter’s phase lock loop circuitry. Unfortunately, the oscillator is also the most vulnerable part of a transmitter to the conditions listed and is the key to this problem. The oscillator’s weak points are in its resonator’s fragile quartz structure (the blank) and support mechanism. The challenge is to invent and adapt this area to these newer harsher conditions and to do it in the smallest space ever required.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.subjectHardened Telemetryen
dc.subjectHigh-g Instrumentationen
dc.subjectCrystal Reference Resonatorsen
dc.subjectOscillatorsen
dc.titleTHE APPLICATION OF HARDENED CRYSTAL REFERENCE OSCILLATORS INTO THE HARDENED SUBMINIATURE TELEMETRY AND SENSOR SYSTEM (HSTSS) PROGRAMen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentUS ARMY YUMA PROVING GROUNDen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-09-11T10:05:16Z
html.description.abstractThis paper briefly reports on concepts for hardening (physically toughening) crystal reference oscillators for the highly integrated program known as HSTSS. Within the HSTSS program is the L & S band transmitter development contract. The harshest requirements for this contract are surviving and functioning, to within 20 ppm of its center frequency, 30 ms after sustaining a shock pulse of 100,000 (g) for 0.5 ms on any axis. Additional requirements call for the transmitter to be no larger than 0.2 in3, and to operate within a 20 ppm frequency stability throughout the temperature range of -400 to +850 centigrade and during centrifugal spins of up to 300 Hz or 25,000 (g). Fundamentally the question is, is it feasible for any telemetry system to be capable of withstanding such harsh conditions and, to be practical on all DoD Test Ranges, still adhere to the stability tolerance guidelines set forth by the Range Commanders Council on Telemetry Standards - IRIG 106-96? Under "normal" conditions, stability requirements for "Range" transmitters are easily satisfied through the use of off-the-shelf crystal reference oscillators which provide the reference frequencies required within a transmitter’s phase lock loop circuitry. Unfortunately, the oscillator is also the most vulnerable part of a transmitter to the conditions listed and is the key to this problem. The oscillator’s weak points are in its resonator’s fragile quartz structure (the blank) and support mechanism. The challenge is to invent and adapt this area to these newer harsher conditions and to do it in the smallest space ever required.


Files in this item

Thumbnail
Name:
ITC_1999_99-H2-2.pdf
Size:
323.2Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record