Show simple item record

dc.contributor.authorMohd, Maqsood A.
dc.contributor.authorMcLaughlin, James J. Jr
dc.date.accessioned2016-05-10T19:27:03Zen
dc.date.available2016-05-10T19:27:03Zen
dc.date.issued1992-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/608914en
dc.descriptionInternational Telemetering Conference Proceedings / October 26-29, 1992 / Town and Country Hotel and Convention Center, San Diego, Californiaen_US
dc.description.abstractTelemetry operation is used extensively on a typical Department of Defense (DOD) test range to transfer data from an airborne transmitter to a ground receiver. The conventional telemetry systems employed are usually narrow-band systems. When a large number of airborne transmitters need to transfer data simultaneously to a ground station, a spread spectrum modulation scheme can be used. The drawback of such a scheme, however, is the large emission bandwidth required. The present frequency channeling plans in the telemetry band do not support frequency approval of large bandwidth data telemetry systems. However, a key requirement for obtaining the frequency approval can be satisfied if it can be shown that the spread spectrum modulated signal does not interfere with other systems in the same band. That is, the spread spectrum telemetry systems (SSTS’s) are feasible if these systems are electromagnetically compatible with the existing narrow-band telemetry receivers (NBTR’s) in their immediate environment. The electromagnetic compatibility (EMC between the SSTS transmitters and the conventional NBTR would promise the beginning of a new era for the telemetry operations on a DOD test range. This paper develops a methodology to establish the EMC between multiple airborne transmitters of an SSTS employing the code division multiple access (CDMA) technique and a ground-based conventional NBTR on a typical DOD test range operating simultaneously in the same band. The paper calculates the electromagnetic interference (EMI) levels between the SSTS and the NBTR to establish the EMC between the two systems.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.subjectSpread spectrum telemetry systemsen
dc.subjectElectromagnetic compatibilityen
dc.subjectNarrow-band telemetry systemsen
dc.subjectDOD test rangeen
dc.titleELECTROMAGNETIC COMPATIBILITY BETWEEN SPREAD SPECTRUM AND CONVENTIONAL TELEMETRY SYSTEMS: THE KEY TO A NEW ERA FOR DOD TEST RANGESen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentEglin Air Force Baseen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-08-19T23:57:26Z
html.description.abstractTelemetry operation is used extensively on a typical Department of Defense (DOD) test range to transfer data from an airborne transmitter to a ground receiver. The conventional telemetry systems employed are usually narrow-band systems. When a large number of airborne transmitters need to transfer data simultaneously to a ground station, a spread spectrum modulation scheme can be used. The drawback of such a scheme, however, is the large emission bandwidth required. The present frequency channeling plans in the telemetry band do not support frequency approval of large bandwidth data telemetry systems. However, a key requirement for obtaining the frequency approval can be satisfied if it can be shown that the spread spectrum modulated signal does not interfere with other systems in the same band. That is, the spread spectrum telemetry systems (SSTS’s) are feasible if these systems are electromagnetically compatible with the existing narrow-band telemetry receivers (NBTR’s) in their immediate environment. The electromagnetic compatibility (EMC between the SSTS transmitters and the conventional NBTR would promise the beginning of a new era for the telemetry operations on a DOD test range. This paper develops a methodology to establish the EMC between multiple airborne transmitters of an SSTS employing the code division multiple access (CDMA) technique and a ground-based conventional NBTR on a typical DOD test range operating simultaneously in the same band. The paper calculates the electromagnetic interference (EMI) levels between the SSTS and the NBTR to establish the EMC between the two systems.


Files in this item

Thumbnail
Name:
ITC_1992_92-0500.pdf
Size:
241.6Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record