Show simple item record

dc.contributor.authorButman, S. A.
dc.contributor.authorLyon, R. F.
dc.date.accessioned2016-05-10T22:45:16Zen
dc.date.available2016-05-10T22:45:16Zen
dc.date.issued1974-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/608954en
dc.descriptionInternational Telemetering Conference Proceedings / October 15-17, 1974 / International Hotel, Los Angeles, Californiaen_US
dc.description.abstractComputer simulation of data transmission over a noncoherent channel with predetection signal-to-noise ratio ST/N₀ = 1 shows that convolutional coding can reduce the energy requirement by 4.5 dB at a bit error rate of 0.001. The effects of receiver quantization and choice of number of tones are analyzed; nearly optimum performance is attained with eight quantization levels and sixteen tones at ST/N₀ = 1. The effects of changing ST/N₀ are also analyzed; for lower ST/N₀, accurate extrapolations can be made from the data, but for higher ST/N₀ the results are more complicated. These analyses will be useful in designing telemetry systems when coherence is limited by turbulence in the signal propagation medium or oscillator instability.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.titlePerformance of Noncoherent MFSK Channels with Codingen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentCalifornia Institute of Technologyen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-06-05T21:21:42Z
html.description.abstractComputer simulation of data transmission over a noncoherent channel with predetection signal-to-noise ratio ST/N₀ = 1 shows that convolutional coding can reduce the energy requirement by 4.5 dB at a bit error rate of 0.001. The effects of receiver quantization and choice of number of tones are analyzed; nearly optimum performance is attained with eight quantization levels and sixteen tones at ST/N₀ = 1. The effects of changing ST/N₀ are also analyzed; for lower ST/N₀, accurate extrapolations can be made from the data, but for higher ST/N₀ the results are more complicated. These analyses will be useful in designing telemetry systems when coherence is limited by turbulence in the signal propagation medium or oscillator instability.


Files in this item

Thumbnail
Name:
ITC_1974_74-04-2.pdf
Size:
175.9Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record