Show simple item record

dc.contributor.authorO'Grady, E. P.
dc.date.accessioned2016-05-14T00:14:12Zen
dc.date.available2016-05-14T00:14:12Zen
dc.date.issued1975-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/609345en
dc.descriptionInternational Telemetering Conference Proceedings / October 14-16, 1975 / Sheraton Inn, Silver Spring, Marylanden_US
dc.description.abstractThis paper suggests an all-digital, time domain approach for real-time simulation of digital communications channels and proposes four possible implementations of the time-domain approach using standard minicomputers or microprocessors and peripheral random number generators. The time-domain method is based on simulating the digital channel on a bits-in, bits-out basis with bit errors introduced into the bit stream in a manner which approximates the error sequence of a real (or hypothetical) communications channel. The error sequence of the simulator can duplicate a measured error sequence or it can be generated by a stochastic model of the error sequence. The four proposed implementations represent different levels of complexity in the architecture of the channel simulator. The first proposed implementation employs only a single computer; the second employs a computer and a peripheral random number generator; the third employs a computer and multiple peripheral random number generators; the fourth employs multiple computers and multiple peripheral random number generators. The significance of the time-domain approach lies in its potential application to the design of high performance, general-purpose media simulators at greatly reduced cost due to the use of standard hardware and relatively simple processing.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.titleArchitectures for Real-Time Digital Channel Simulatorsen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentUniversity of Marylanden
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-09-11T10:25:06Z
html.description.abstractThis paper suggests an all-digital, time domain approach for real-time simulation of digital communications channels and proposes four possible implementations of the time-domain approach using standard minicomputers or microprocessors and peripheral random number generators. The time-domain method is based on simulating the digital channel on a bits-in, bits-out basis with bit errors introduced into the bit stream in a manner which approximates the error sequence of a real (or hypothetical) communications channel. The error sequence of the simulator can duplicate a measured error sequence or it can be generated by a stochastic model of the error sequence. The four proposed implementations represent different levels of complexity in the architecture of the channel simulator. The first proposed implementation employs only a single computer; the second employs a computer and a peripheral random number generator; the third employs a computer and multiple peripheral random number generators; the fourth employs multiple computers and multiple peripheral random number generators. The significance of the time-domain approach lies in its potential application to the design of high performance, general-purpose media simulators at greatly reduced cost due to the use of standard hardware and relatively simple processing.


Files in this item

Thumbnail
Name:
ITC_1975_75-11-3.pdf
Size:
157.1Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record