APPROACH FOR A WIDE DEVIATION RF PHASE MODULATOR on a 6U-VME-CARD
dc.contributor.author | Weitzman, Jonathan M | |
dc.date.accessioned | 2016-05-18T21:17:43Z | |
dc.date.available | 2016-05-18T21:17:43Z | |
dc.date.issued | 1998-10 | |
dc.identifier.issn | 0884-5123 | |
dc.identifier.issn | 0074-9079 | |
dc.identifier.uri | http://hdl.handle.net/10150/609672 | |
dc.description | International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California | en_US |
dc.description.abstract | A Phase Modulator combining digital techniques with non-traditional analog circuitry can minimize the shortcomings of a traditional (purely analog) Phase Modulator. These shortcomings are: nonlinear response from input modulating signal to output modulated signal; parameters (frequency and modulation index) that are difficult to set; and the need for complex filters. The design approach discussed in this paper uses a combination of Direct Digital Synthesis (DDS) and analog devices operating in their linear range to generate a Phase Modulated RF (140 MHz) signal. A Numerically Controlled Oscillator (NCO) digitally generates the first IF yielding a very accurate, repeatable and linear signal with easily adjustable parameters such as frequency and modulation index. Linear multipliers (instead of saturated diode mixers or step recovery diodes) are used for up-conversion to RF. Using linear multipliers eases the filtering requirements due to the significantly reduced harmonics and IM (Inter-Modulation) terms. The resulting RF signal is easily translated to higher frequency bands such as L, S, C, X or K. | |
dc.description.sponsorship | International Foundation for Telemetering | en |
dc.language.iso | en_US | en |
dc.publisher | International Foundation for Telemetering | en |
dc.relation.url | http://www.telemetry.org/ | en |
dc.rights | Copyright © International Foundation for Telemetering | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | DDS (Direct Digital Synthesizer) | en |
dc.subject | NCO (Numerically Controller Oscillator) | en |
dc.subject | Phase Modulator | en |
dc.title | APPROACH FOR A WIDE DEVIATION RF PHASE MODULATOR on a 6U-VME-CARD | en_US |
dc.type | text | en |
dc.type | Proceedings | en |
dc.contributor.department | GDP Space Systems | en |
dc.identifier.journal | International Telemetering Conference Proceedings | en |
dc.description.collectioninformation | Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection. | en |
refterms.dateFOA | 2018-06-12T01:02:17Z | |
html.description.abstract | A Phase Modulator combining digital techniques with non-traditional analog circuitry can minimize the shortcomings of a traditional (purely analog) Phase Modulator. These shortcomings are: nonlinear response from input modulating signal to output modulated signal; parameters (frequency and modulation index) that are difficult to set; and the need for complex filters. The design approach discussed in this paper uses a combination of Direct Digital Synthesis (DDS) and analog devices operating in their linear range to generate a Phase Modulated RF (140 MHz) signal. A Numerically Controlled Oscillator (NCO) digitally generates the first IF yielding a very accurate, repeatable and linear signal with easily adjustable parameters such as frequency and modulation index. Linear multipliers (instead of saturated diode mixers or step recovery diodes) are used for up-conversion to RF. Using linear multipliers eases the filtering requirements due to the significantly reduced harmonics and IM (Inter-Modulation) terms. The resulting RF signal is easily translated to higher frequency bands such as L, S, C, X or K. |