Show simple item record

dc.contributor.authorBaggot, H. E.
dc.contributor.authorWynn, J. B.
dc.date.accessioned2016-05-18T22:01:14Z
dc.date.available2016-05-18T22:01:14Z
dc.date.issued1977-10
dc.identifier.issn0884-5123
dc.identifier.issn0074-9079
dc.identifier.urihttp://hdl.handle.net/10150/609688
dc.descriptionInternational Telemetering Conference Proceedings / October 18-20, 1977 / Hyatt House Hotel, Los Angeles, Californiaen_US
dc.description.abstractDuring operational tests of the U.S. Navy's Poseidon missile, an instrumented ship tracks every test missile launched by the nuclear subs. The key sensor aboard this launch-area support ship, the USNS RANGE SENTINEL, is its antenna system. Onboard computers switch the ship's four independent, main S-band antennas (Fig. 1) to capture up to four missiles fired in succession and to expedite command action (e.g., continued flight or destruct). This multi-antenna control by computer leads to a complex testing problem for the computer software, constrained by the need for cost effectively proving the software's operational capability without penalizing hardware development. Rigid control of hardware-caused variables, and a near-operational test environment, are vital Software test prerequisites. To this end, using a stable RF pointing source at altitude above the antennas (i.e., to reduce parallax distortion and multipath effects) is a preferred approach in testing antenna-management software. This paper describes two experiments* to (1) initially establish the feasibility of using an airborne S-band telemetry transmitter as an RF signal source for checking out the USNS RANGE SENTINEL's antenna control, and then (2) demonstrate the effectiveness of this RF source in verifying the ship's antenna alignment and validating the operational antenna software.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.titleTethered Balloon for Checkout of Computer-Controlled Antennasen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentInterstate Electronics Corporationen
dc.contributor.departmentDepartment of the Navyen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-09-11T10:30:08Z
html.description.abstractDuring operational tests of the U.S. Navy's Poseidon missile, an instrumented ship tracks every test missile launched by the nuclear subs. The key sensor aboard this launch-area support ship, the USNS RANGE SENTINEL, is its antenna system. Onboard computers switch the ship's four independent, main S-band antennas (Fig. 1) to capture up to four missiles fired in succession and to expedite command action (e.g., continued flight or destruct). This multi-antenna control by computer leads to a complex testing problem for the computer software, constrained by the need for cost effectively proving the software's operational capability without penalizing hardware development. Rigid control of hardware-caused variables, and a near-operational test environment, are vital Software test prerequisites. To this end, using a stable RF pointing source at altitude above the antennas (i.e., to reduce parallax distortion and multipath effects) is a preferred approach in testing antenna-management software. This paper describes two experiments* to (1) initially establish the feasibility of using an airborne S-band telemetry transmitter as an RF signal source for checking out the USNS RANGE SENTINEL's antenna control, and then (2) demonstrate the effectiveness of this RF source in verifying the ship's antenna alignment and validating the operational antenna software.


Files in this item

Thumbnail
Name:
ITC_1977_77-04-3.pdf
Size:
589.6Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record