Show simple item record

dc.contributor.authorMujahid, Hana
dc.contributor.authorTan, Feng
dc.contributor.authorZhang, Jian
dc.contributor.authorNallamilli, Babi Ramesh
dc.contributor.authorPendarvis, Ken
dc.contributor.authorPeng, Zhaohua
dc.date.accessioned2016-05-20T09:01:54Z
dc.date.available2016-05-20T09:01:54Z
dc.date.issued2013en
dc.identifier.citationMujahid et al. Proteome Science 2013, 11:26 http://www.proteomesci.com/content/11/1/26en
dc.identifier.doi10.1186/1477-5956-11-26en
dc.identifier.urihttp://hdl.handle.net/10150/610238
dc.description.abstractPlant cells are routinely exposed to various pathogens and environmental stresses that cause cell wall perturbations. Little is known of the mechanisms that plant cells use to sense these disturbances and transduce corresponding signals to regulate cellular responses to maintain cell wall integrity. Previous studies in rice have shown that removal of the cell wall leads to substantial chromatin reorganization and histone modification changes concomitant with cell wall re-synthesis. But the genes and proteins that regulate these cellular responses are still largely unknown. Here we present an examination of the nuclear proteome differential expression in response to removal of the cell wall in rice suspension cells using multiple nuclear proteome extraction methods. A total of 382 nuclear proteins were identified with two or more peptides, including 26 transcription factors. Upon removal of the cell wall, 142 nuclear proteins were up regulated and 112 were down regulated. The differentially expressed proteins included transcription factors, histones, histone domain containing proteins, and histone modification enzymes. Gene ontology analysis of the differentially expressed proteins indicates that chromatin & nucleosome assembly, protein-DNA complex assembly, and DNA packaging are tightly associated with cell wall removal. Our results indicate that removal of the cell wall imposes a tremendous challenge to the cells. Consequently, plant cells respond to the removal of the cell wall in the nucleus at every level of the regulatory hierarchy.
dc.language.isoenen
dc.publisherBioMed Centralen
dc.relation.urlhttp://www.proteomesci.com/content/11/1/26en
dc.rights© 2013 Mujahid et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0).en
dc.rights.urihttps://creativecommons.org/licenses/by/2.0/
dc.subjectProtoplasten
dc.subjectRiceen
dc.subjectNuclear proteinsen
dc.subjectCell wallen
dc.subjectComparative proteomicsen
dc.titleNuclear proteome response to cell wall removal in rice (Oryza sativa)en
dc.typeArticleen
dc.identifier.eissn1477-5956en
dc.contributor.departmentDepartment of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USAen
dc.contributor.departmentInstitute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USAen
dc.contributor.departmentPresent Address: College of Agriculture and Life Sciences, University of Arizona, P.O. Box 210036, Tucson, AZ 85721, USAen
dc.identifier.journalProteome Scienceen
dc.description.collectioninformationThis item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at repository@u.library.arizona.edu.en
dc.eprint.versionFinal published versionen
refterms.dateFOA2018-09-11T10:56:47Z
html.description.abstractPlant cells are routinely exposed to various pathogens and environmental stresses that cause cell wall perturbations. Little is known of the mechanisms that plant cells use to sense these disturbances and transduce corresponding signals to regulate cellular responses to maintain cell wall integrity. Previous studies in rice have shown that removal of the cell wall leads to substantial chromatin reorganization and histone modification changes concomitant with cell wall re-synthesis. But the genes and proteins that regulate these cellular responses are still largely unknown. Here we present an examination of the nuclear proteome differential expression in response to removal of the cell wall in rice suspension cells using multiple nuclear proteome extraction methods. A total of 382 nuclear proteins were identified with two or more peptides, including 26 transcription factors. Upon removal of the cell wall, 142 nuclear proteins were up regulated and 112 were down regulated. The differentially expressed proteins included transcription factors, histones, histone domain containing proteins, and histone modification enzymes. Gene ontology analysis of the differentially expressed proteins indicates that chromatin & nucleosome assembly, protein-DNA complex assembly, and DNA packaging are tightly associated with cell wall removal. Our results indicate that removal of the cell wall imposes a tremendous challenge to the cells. Consequently, plant cells respond to the removal of the cell wall in the nucleus at every level of the regulatory hierarchy.


Files in this item

Thumbnail
Name:
1477-5956-11-26.pdf
Size:
2.838Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

© 2013 Mujahid et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0).
Except where otherwise noted, this item's license is described as © 2013 Mujahid et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0).