We are upgrading the repository! We will continue our upgrade in February 2025 - we have taken a break from the upgrade to open some collections for end-of-semester submission. The MS-GIST Master's Reports, SBE Senior Capstones, and UA Faculty Publications collections are currently open for submission. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available in another collection.
Activation of the kynurenine pathway and increased production of the excitotoxin quinolinic acid following traumatic brain injury in humans
Author
Yan, Edwin B.Frugier, Tony
Lim, Chai K.
Heng, Benjamin
Sundaram, Gayathri
Tan, May
Rosenfeld, Jeffrey V.
Walker, David W.
Guillemin, Gilles J.
Morganti-Kossmann, Maria C.
Affiliation
Department of Physiology, Monash UniversityDepartment of Pharmacology and Therapeutics, The University of Melbourne
Neurounflammation group, Faculty of Medicine and Health Sciences, Macquarie University
Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical Research
Hospital Queen Elizabeth
Department of Neurosurgery, The Alfred Hospital
Department of Surgery, Central Clinical School and Monash Institute of Medical Engineering, Monash University
The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre
Australian New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University
Department of Child Health, Barrow Neurological Institute, University of Arizona
Issue Date
2015
Metadata
Show full item recordPublisher
BioMed CentralCitation
Yan et al. Journal of Neuroinflammation (2015) 12:110 DOI 10.1186/s12974-015-0328-2Journal
Journal of NeuroinflammationRights
© 2015 Yan et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0).Collection Information
This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at repository@u.library.arizona.edu.Abstract
ABSTRACT: During inflammation, the kynurenine pathway (KP) metabolises the essential amino acid tryptophan (TRP) potentially contributing to excitotoxicity via the release of quinolinic acid (QUIN) and 3-hydroxykynurenine (3HK). Despite the importance of excitotoxicity in the development of secondary brain damage, investigations on the KP in TBI are scarce. In this study, we comprehensively characterised changes in KP activation by measuring numerous metabolites in cerebrospinal fluid (CSF) from TBI patients and assessing the expression of key KP enzymes in brain tissue from TBI victims. Acute QUIN levels were further correlated with outcome scores to explore its prognostic value in TBI recovery. METHODS: Twenty-eight patients with severe TBI (GCS ≤ 8, three patients had initial GCS = 9-10, but rapidly deteriorated to ≤8) were recruited. CSF was collected from admission to day 5 post-injury. TRP, kynurenine (KYN), kynurenic acid (KYNA), QUIN, anthranilic acid (AA) and 3-hydroxyanthranilic acid (3HAA) were measured in CSF. The Glasgow Outcome Scale Extended (GOSE) score was assessed at 6 months post-TBI. Post-mortem brains were obtained from the Australian Neurotrauma Tissue and Fluid Bank and used in qPCR for quantitating expression of KP enzymes (indoleamine 2,3-dioxygenase-1 (IDO1), kynurenase (KYNase), kynurenine amino transferase-II (KAT-II), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3HAO) and quinolinic acid phosphoribosyl transferase (QPRTase) and IDO1 immunohistochemistry. RESULTS: In CSF, KYN, KYNA and QUIN were elevated whereas TRP, AA and 3HAA remained unchanged. The ratios of QUIN:KYN, QUIN:KYNA, KYNA:KYN and 3HAA:AA revealed that QUIN levels were significantly higher than KYN and KYNA, supporting increased neurotoxicity. Amplified IDO1 and KYNase mRNA expression was demonstrated on post-mortem brains, and enhanced IDO1 protein coincided with overt tissue damage. QUIN levels in CSF were significantly higher in patients with unfavourable outcome and inversely correlated with GOSE scores. CONCLUSION: TBI induced a striking activation of the KP pathway with sustained increase of QUIN. The exceeding production of QUIN together with increased IDO1 activation and mRNA expression in brain-injured areas suggests that TBI selectively induces a robust stimulation of the neurotoxic branch of the KP pathway. QUIN's detrimental roles are supported by its association to adverse outcome potentially becoming an early prognostic factor post-TBI.EISSN
1742-2094Version
Final published versionAdditional Links
http://www.jneuroinflammation.com/content/12/1/110ae974a485f413a2113503eed53cd6c53
10.1186/s12974-015-0328-2
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2015 Yan et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0).