Show simple item record

dc.contributor.authorJack, Chandra
dc.contributor.authorRidgeway, Julia
dc.contributor.authorMehdiabadi, Natasha
dc.contributor.authorJones, Emily
dc.contributor.authorEdwards, Tracy
dc.contributor.authorQueller, David
dc.contributor.authorStrassmann, Joan
dc.date.accessioned2016-05-20T09:05:26Z
dc.date.available2016-05-20T09:05:26Z
dc.date.issued2008en
dc.identifier.citationBMC Evolutionary Biology 2008, 8:293 doi:10.1186/1471-2148-8-293en
dc.identifier.doi10.1186/1471-2148-8-293en
dc.identifier.urihttp://hdl.handle.net/10150/610377
dc.description.abstractBACKGROUND:A major challenge for evolutionary biology is explaining altruism, particularly when it involves death of one party and occurs across species. Chimeric fruiting bodies of Dictyostelium discoideum and Dictyostelium purpureum develop from formerly independent amoebae, and some die to help others. Here we examine co-aggregation between D. discoideum and D. purpureum, determine its frequency and which party benefits, and the extent of fair play in contribution to the altruistic caste.RESULTS:We mixed cells from both species in equal proportions, and then we analyzed 198 individual fruiting bodies, which always had either a D. discoideum or D. purpureum phenotype (D. discoideum- 98, D. purpureum- 100). Fifty percent of the fruiting bodies that looked like D. discoideum and 22% of the fruiting bodies that looked like D. purpureum were chimeric, though the majority of spores in any given fruiting body belonged to one species (D. discoideum fruiting bodies- 0.85 +/- 0.03, D. purpureum fruiting bodies- 0.94 +/- 0.02). Clearly, there is species level recognition occurring that keeps the cells mostly separate. The number of fruiting bodies produced with the D. discoideum phenotype increased from 225 +/- 32 fruiting bodies when D. discoideum was alone to 486 +/- 61 in the mix treatments. However, the number of D. discoideum spores decreased, although not significantly, from 2.75e7 +/- 1.29e7 spores in the controls to 2.06e7 +/- 8.33e6 spores in the mix treatments. D. purpureum fruiting body and spore production decreased from 719 +/- 111 fruiting bodies and 5.81e7 +/- 1.26e7 spores in the controls to 394 +/- 111 fruiting bodies and 9.75e6 +/- 2.25e6 spores in the mix treatments.CONCLUSION:Both species appear to favor clonality but can cooperate with each other to produce fruiting bodies. Cooperating amoebae are able to make larger fruiting bodies, which are advantageous for migration and dispersal, but both species here suffer a cost in producing fewer spores per fruiting body.
dc.language.isoenen
dc.publisherBioMed Centralen
dc.relation.urlhttp://www.biomedcentral.com/1471-2148/8/293en
dc.rights© 2008 Jack et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0).en
dc.rights.urihttps://creativecommons.org/licenses/by/2.0/
dc.titleSegregate or cooperate- a study of the interaction between two species of Dictyosteliumen
dc.typeArticleen
dc.identifier.eissn1471-2148en
dc.contributor.departmentDepartment of Ecology and Evolutionary Biology, Rice University, Houston, TX, USAen
dc.contributor.departmentSmithsonian Institution, National Museum of Natural History, PO Box 37012, Washington, DC 20013, USAen
dc.contributor.departmentDepartment of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USAen
dc.identifier.journalBMC Evolutionary Biologyen
dc.description.collectioninformationThis item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at repository@u.library.arizona.edu.en
dc.eprint.versionFinal published versionen
refterms.dateFOA2018-06-12T23:53:58Z
html.description.abstractBACKGROUND:A major challenge for evolutionary biology is explaining altruism, particularly when it involves death of one party and occurs across species. Chimeric fruiting bodies of Dictyostelium discoideum and Dictyostelium purpureum develop from formerly independent amoebae, and some die to help others. Here we examine co-aggregation between D. discoideum and D. purpureum, determine its frequency and which party benefits, and the extent of fair play in contribution to the altruistic caste.RESULTS:We mixed cells from both species in equal proportions, and then we analyzed 198 individual fruiting bodies, which always had either a D. discoideum or D. purpureum phenotype (D. discoideum- 98, D. purpureum- 100). Fifty percent of the fruiting bodies that looked like D. discoideum and 22% of the fruiting bodies that looked like D. purpureum were chimeric, though the majority of spores in any given fruiting body belonged to one species (D. discoideum fruiting bodies- 0.85 +/- 0.03, D. purpureum fruiting bodies- 0.94 +/- 0.02). Clearly, there is species level recognition occurring that keeps the cells mostly separate. The number of fruiting bodies produced with the D. discoideum phenotype increased from 225 +/- 32 fruiting bodies when D. discoideum was alone to 486 +/- 61 in the mix treatments. However, the number of D. discoideum spores decreased, although not significantly, from 2.75e7 +/- 1.29e7 spores in the controls to 2.06e7 +/- 8.33e6 spores in the mix treatments. D. purpureum fruiting body and spore production decreased from 719 +/- 111 fruiting bodies and 5.81e7 +/- 1.26e7 spores in the controls to 394 +/- 111 fruiting bodies and 9.75e6 +/- 2.25e6 spores in the mix treatments.CONCLUSION:Both species appear to favor clonality but can cooperate with each other to produce fruiting bodies. Cooperating amoebae are able to make larger fruiting bodies, which are advantageous for migration and dispersal, but both species here suffer a cost in producing fewer spores per fruiting body.


Files in this item

Thumbnail
Name:
1471-2148-8-293.pdf
Size:
1.141Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

© 2008 Jack et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0).
Except where otherwise noted, this item's license is described as © 2008 Jack et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0).