Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods
Author
Gowda, MalaliVenu, R. C.
Raghupathy, Mohan
Nobuta, Kan
Li, Huameng
Wing, Rod
Stahlberg, Eric
Couglan, Sean
Haudenschild, Christian
Dean, Ralph
Nahm, Baek-Hie
Meyers, Blake
Wang, Guo-Liang
Affiliation
Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USADepartment of Plant and Soil Sciences, University of Delaware, DE 19711, USA
Arizona Genomics Institute, Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
Ohio Supercomputer Center, The Ohio State University, Columbus, OH 43210, USA
Agilent Technologies Inc, Little Falls Site, 2850 Centerville Road, Delaware 19711, USA
Solexa, Inc. 25861 Industrial Blvd, Hayward, CA, 94545, USA
Fungal Genomics Laboratory, Department of Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA
Department of Biological Science, Myongji University, Kyonggido, 449728, Korea
Issue Date
2006
Metadata
Show full item recordPublisher
BioMed CentralCitation
BMC Genomics 2006, 7:310 doi:10.1186/1471-2164-7-310Journal
BMC GenomicsRights
© 2006 Gowda et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0).Collection Information
This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at repository@u.library.arizona.edu.Abstract
BACKGROUND:Rice blast, caused by the fungal pathogen Magnaporthe grisea, is a devastating disease causing tremendous yield loss in rice production. The public availability of the complete genome sequence of M. grisea provides ample opportunities to understand the molecular mechanism of its pathogenesis on rice plants at the transcriptome level. To identify all the expressed genes encoded in the fungal genome, we have analyzed the mycelium and appressorium transcriptomes using massively parallel signature sequencing (MPSS), robust-long serial analysis of gene expression (RL-SAGE) and oligoarray methods.RESULTS:The MPSS analyses identified 12,531 and 12,927 distinct significant tags from mycelia and appressoria, respectively, while the RL-SAGE analysis identified 16,580 distinct significant tags from the mycelial library. When matching these 12,531 mycelial and 12,927 appressorial significant tags to the annotated CDS, 500 bp upstream and 500 bp downstream of CDS, 6,735 unique genes in mycelia and 7,686 unique genes in appressoria were identified. A total of 7,135 mycelium-specific and 7,531 appressorium-specific significant MPSS tags were identified, which correspond to 2,088 and 1,784 annotated genes, respectively, when matching to the same set of reference sequences. Nearly 85% of the significant MPSS tags from mycelia and appressoria and 65% of the significant tags from the RL-SAGE mycelium library matched to the M. grisea genome. MPSS and RL-SAGE methods supported the expression of more than 9,000 genes, representing over 80% of the predicted genes in M. grisea. About 40% of the MPSS tags and 55% of the RL-SAGE tags represent novel transcripts since they had no matches in the existing M. grisea EST collections. Over 19% of the annotated genes were found to produce both sense and antisense tags in the protein-coding region. The oligoarray analysis identified the expression of 3,793 mycelium-specific and 4,652 appressorium-specific genes. A total of 2,430 mycelial genes and 1,886 appressorial genes were identified by both MPSS and oligoarray.CONCLUSION:The comprehensive and deep transcriptome analysis by MPSS and RL-SAGE methods identified many novel sense and antisense transcripts in the M. grisea genome at two important growth stages. The differentially expressed transcripts that were identified, especially those specifically expressed in appressoria, represent a genomic resource useful for gaining a better understanding of the molecular basis of M. grisea pathogenicity. Further analysis of the novel antisense transcripts will provide new insights into the regulation and function of these genes in fungal growth, development and pathogenesis in the host plants.EISSN
1471-2164Version
Final published versionAdditional Links
http://www.biomedcentral.com/1471-2164/7/310ae974a485f413a2113503eed53cd6c53
10.1186/1471-2164-7-310
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2006 Gowda et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0).