• A STOCHASTIC SEDIMENT YIELD MODEL FOR BAYESIAN DECISION ANALYSIS APPLIED TO MULTIPURPOSE RESERVOIR DESIGN

      Smith, Jeffrey Haviland; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1975-07)
      This thesis presents a methodology for obtaining the optimal design capacity for sediment yield in multipurpose reservoir design. A stochastic model is presented for the prediction of sediment yield in a semi -arid watershed based on rainfall data and watershed characteristics. Uncertainty stems from each of the random variables used in the model, namely, rainfall amount, storm duration, runoff, peak flow rate, and number of events per season. Using the stochastic sediment yield model for N- seasons, a Bayesian decision analysis is carried out for a dam site in southern Arizona. Extensive numerical analyses and simplifying assumptions are made to facilitate finding the optimal solution. The model has applications in the planning of reservoirs and dams where the effective lifetime of the facility may be evaluated in terms of storage capacity and of the effects of land management on the watershed. Experimental data from the Atterbury watershed are used to calibrate the model and to evaluate uncertainties associated with our knowledge of the parameters of the joint distribution of rainfall and storm duration used in calculating the sediment yield amount.