• A multiobjective global optimization algorithm with application to calibration of hydrologic models

      Yapo, Patrice O.; Gupta, Hoshin Vijai; Sorooshian, Soroosh; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1997-02)
      This report presents a new multiple objective optimization algorithm that is capable of solving for the entire Pareto set in one single optimization run. The multi-objective complex evolution (MOCOM-UA) procedure is based on the following three concepts: (1) population, (2) rank-based selection, and (3) competitive evolution. In the MOCOM-UA algorithm, a population of candidate solutions is evolved in the feasible space to search for the Pareto set. Ranking of the population is accomplished through Pareto ranking, where all points are successively placed on different Pareto fronts. Competitive evolution consists of selecting subsets of points (including all worst points in the population) based on their ranks and moving the worst points toward the Pareto set using the newly developed multi-objective simplex (MOSIM) procedure. Test analysis on the MOCOM-UA algorithm is accomplished on mathematical problems of increasing complexity and based on a bi-criterion measure of performance. The two performance criteria are: (1) efficiency, as measured by the ability of the algorithm to converge quickly, and (2) effectiveness, as measured by the ability of the algorithm to locate the Pareto set. Comparison of the MOCOM-UA algorithm against three multi-objective genetic algorithms (MOGAs) favors the former. In a realistic application, the MOCOM-UA algorithm is used to calibrate the Soil Moisture Accounting model of the National Weather Service River Forecasting Systems (NWSRFS-SMA). Multi-objective calibration of this model is accomplished using two bi-criterion objective functions, namely the Daily Root Mean Square-Heteroscedastic Maximum Likelihood Estimator (DRMS-HMLE) and rising limb /falling limb (RISE/FALL) objective functions. These two multi-objective calibrations provide some interesting insights into the influence of different objectives in the location of final parameter values, as well as limitations in the structure of the NWSRFS-SMA model.