• Literature Pertaining to Water Quality and Quantity in Unsaturated Porous Media

      Tyagi, Avdhesh K. (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1972-05)
      Introduction: The movement of moisture and the simultaneous transfer of water and solutes in unsaturated porous media are problems of practical interest in ground water hydrology and soil physics. A large fraction of the water falling as rain on the land surfaces of the earth moves through unsaturated zone of soil during the subsequent processes of infiltration, drainage, evaporation, and absorption of soil -water by plant roots. A soil profile is characteristically nonuniform in its properties, nonisothermal, and may be nonrigid. Microorganisms and the roots of higher plants are a part of the system. This region is characterized by cylic fluctuation of water content as water is removed from the soil profile by evaportranspiration and replenished by recharge, irrigation, or rainfall. In unsaturated porous media the problem of movement and retention of water may be approached from (1) the molecular, (2) the microscopic, or (3) the macroscopic standpoint. In the molecular viewpoint theories of the mechanisms of flow and retention in terms of the behavior of water molecules are devised. At microscopic level a theory of flow treating the fluid in pores as a continuum and applying the principles of continuum mechanics to understand the detailed behavior of fluid within the pores is developed. The complicated pore geometry and consequent impossibility of specifying the boundary conditions on flow, preclude any practical progress by this appraoch. Since the behavior of individual molecules and the distributions of fluid velocity and pressure cannot be observed in porous media, a macroscopic theory of flow is needed. In the macroscopic approach, all variables are treated continuous functions of time and space. Velocity, pressure, and other variables are assumed as point functions. Thus, any theory of water transport to be useful must be developed to the point of describing the transfer of water on the macroscopic level. The coefficients of transport such as permeability and diffusivity can be defined microscopically. In many investigations which involve the transport of pesticides and fertilizes along with water , the simultaneous movement of water and solutes is of primary concern. These pollutants when mixed with water move in the unsaturated soil and finally join the region of saturated soil or water table, resulting in the contamination of fresh water existing below the water table. The scope of this report is to review the available literature, that may be categorized into two parts; one, the movement of water in unsaturated soil, and the other, the simultaneous movement of water and solutes in unsaturated soil. The papers, reviewed in this report, pertain to the theoretical study, laboratory study and field study on the two problems. At the end, an appendix appears which lists the references, categorizing the kind of study by various investigators.