• RESPONSE FUNCTIONS IN THE CRITICAL COMPARISON OF CONJUNCTIVE MANAGEMENT SYSTEMS IN TWO WESTERN STATES

      Lacher, Laurel Jane,1964-; Maddock, Thomas, III; Lord, William B.; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1993-04)
      Conjunctive management of surface and ground -water resources on state and local levels is a relatively new political phenomenon. This type of management has evolved, in part, in response to growing populations with ever -increasing, and often conflicting, water demands. In addition, a more sophisticated technical understanding of the physical link between groundwater and surface waters has led water managers to reconsider historical strategies for solving water supply problems. In light of growing demand and improved technology, some western states have begun the transition from crisis- oriented water management to one of long -term planning for population growth and environmental protection. This planning process requires that the constituents of a region define their water use goals and objectives so that various approaches to conjunctive management may be evaluated for their suitability to that particular physical and socio- political environment.
    • A COST-EFFECTIVENESS STUDY AND ANALYSIS OF MUNICIPAL REFUSE DISPOSAL SYSTEMS

      Popovich, Michael Lee, 1944-; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1973-06)
      The comparison of alternative systems of disposing efficiently and effectively of four to five pounds of solid waste per person per day in the United States urban communities is undertaken by using Kazanowski's standardized cost -effectiveness methodology. The economic criteria for studying this problem are often limited to cost or marketable measures; in contrast, use of a cost -effectiveness approach allows the inclusion of non- quantifiable measures of effectiveness such as public acceptance, politics, health risks, environmental considerations, and soil benefits. Data from a case study in Tucson, Arizona, is used to illustrate the problem.
    • Decision Making Under Uncertainty in Systems Hydrology

      Davis, Donald Ross; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1971-05)
      Design of engineering projects involve a certain amount of uncertainty. How should design decisions be taken in face of the uncertainty? What is the most efficient way of handling the data? Decision theory can provide useful answers to these questions. The literature review shows that decision theory is a fairly well developed decision method, with almost no application in hydrology. The steps of decision theoretic analysis are given. They are augmented by the concept of expected expected opportunity loss, which is developed as a means of measuring the expected value of additional data before they are received. The method is applied to the design of bridge piers and flood levees for Rillito Creek, Pima County, Arizona. Uncertainty in both the mean and the variance of the logarithms of the peak flows of Rillito Creek is taken into account. Also shown are decision theoretic methods for: 1) handling secondary data, such as obtained from a regression relation, 2) evaluating the effect of the use of non - sufficient statistics, 3) considering alternate models and 4) regionalizing data.It is concluded that decision theory provides a rational structure for making design decisions and for the associated data collection and handling problems.
    • MATHEMATICAL SYSTEM THEORY AND THE ECOSYSTEM CONCEPT, AN APPROACH TO MODELLING WATERSHED BEHAVIOR

      Rogers, James Joseph, 1942-; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1971-06)
      This study explores the possible role of mathematical system theory in integrating existing ecological knowledge within the existing concepts of the structure of the biosphere. The objective of this integration is a theory of ecosystems which must include interactions. The basic unit of the biosphere is the biogeocoenose; similar to the ecosystem, but homogeneous with respect to topographic, microclimatic, vegetation, animal, pedalogical, hydrological and geochemical conditions. The role of the biogeocoenose in a theory of ecosystems based on system theory is discussed. The biogeocoenose may serve as the building block for modeling watersheds as ecosystems. The fundamentals of system theory are reviewed. As an example, an analysis and synthesis of the arid zone water balance follows. The water balance is resolved into twenty components which represent the water balance of (1) the canopy, (2) the mulch, (3) the soil surface, (4) the soil, and (5) the plant, including interactions. The twenty components were modeled as separate systems which were later coupled into one overall, complex, well defined ecosystem water balance system. The example illustrates the role of system theory in integrating ecological knowledge. Further discussion indicates the need for explicitly including plant behavior in the water balance model.
    • DEVELOPMENT AND VALIDATION OF A NEW MAXIMUM LIKELIHOOD CRITERION SUITABLE FOR DATA COLLECTED AT UNEQUAL TIME INTERVALS

      Duan, Qingyun; Sorooshian, Soroosh; Ibbitt, Richard P.; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1987-08)
      A new Maximum Likelihood Criterion (MLE) suitable for data which are recorded at unequal time intervals and contain auto-correlated errors is developed. Validation of the new MLE criterion has been carried out both on a simple two - parameter reservoir model using synthetical data and on a more complicated hillslope model using real data from the Pukeiti Catchment in New Zealand. Comparison between the new MLE criterion and the Simple Least Squares (SLS) criterion reveals the superiority of the former over the latter. Comparison made between the new MLE and the MLE for auto-correlated case proposed by Sorooshian in 1978 has shown that both criteria would yield results with no practical difference if equal time interval data were used. However, the new MLE can work on variable time interval data which provide more information than equal time interval data, and therefore produces better visual results in hydrologic simulations.
    • COLLECTIVE ADJUSTMENT OF THE PARAMETERS OF THE MATHEMATICAL MODEL OF A LARGE AQUIFER

      Lovell, Robert E.; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1971-06)
      The problem of evaluating the parameters of the mathematical model of an unconfined aquifer is examined with a view toward development of automated or computer -aided methods. A formulation is presented in which subjective confidence ranges for each of the model parameters are quantified and entered into an objective function as linear penalty functions. Parameters are then adjusted by a procedure which seeks to reduce the model error to acceptable limits. A digital computer model of the Tucson basin aquifer is adapted and used to illustrate the concepts and demonstrate the method.
    • CONFUSION WHERE GROUND AND SURFACE WATERS MEET: GILA RIVER GENERAL ADJUDICATION, ARIZONA AND THE SEARCH FOR SUBFLOW

      Sobczak, Robert V.; Maddock, Thomas, III; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1994-10)
      Arizona is presently in the midst of a general adjudication for the Gila River system -- the watershed which comprises the southern two- thirds of the state. The purpose of the adjudication is to prioritize all water claims in the river system: both state -established and federally reserved rights. Arizona adheres to a bifurcated (or divided) system of water law which only recognizes a component of ground water -- called subflow -- to be appropriable. Wells which pump non-appropriable water -- called tributary flow -- are not to be included in the adjudication. The problem is that federal laws do not recognize this artificial bifurcation. The challenge lies in identifying a subflow zone which satisfies the hydrologic fiction of existing state precedents and the hydrologic reality of federal statutes. At the core of the problem lies the fate of Arizona's perennial stream water and the fulfillment of federally reserved tribal water rights. Thus, larger questions loom: can Arizona law reconcile its glutinous past with a water -scarce future, will the adjudication ever reach a finality, and even if it does, will it be a finality that all sides can live with?
    • THE ESTIMATION AND SCALING OF LAND-SURFACE FLUXES OF LATENT AND SENSIBLE-HEAT WITH REMOTELY SENSED DATA OVER A GRASSLAND SITE

      Humes, Karen Sue; Sorooshian, Soroosh; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1993)
      The overall topic of the research described in this dissertation was the partitioning of available energy at the Earth's surface into sensible and latent heat flux, with an emphasis on the development of techniques which utilize remotely sensed data. One of the major objectives was to investigate the modification of existing techniques, developed over agricultural surfaces, to "natural" ecosystems (i.e., non -agricultural vegetation types with variable and incomplete canopy cover). Ground -based measurements of surface fluxes, vegetation cover, and surface and root -zone soil moisture from the First ISLSCP (International Land Surface Climatology Program) Field Experiment (FIFE) were used to examine the factors controlling the partitioning of energy at ground stations with contrasting surface characteristics. Utilizing helicopter -based and satellite -based data acquired directly over ground -based flux stations at the FINE experimental area, relatively simple algorithms were developed for estimating the soil heat flux and sensible heat flux from remotely sensed data. The root mean square error (RMSE) between the sensible heat flux computed with the remotely sensed data and the sensible heat flux measured at the ground stations was 33 Wm 2. These algorithms were then applied on a pixel -by -pixel basis to data from a Landsat -TM (Thematic Mapper) scene acquired over the FIFE site on August 15, 1987 to produce spatially distributed surface energy- balance components for the FIFE site. A methodology for quantifying the effect of spatial scaling on parameters derived from remotely sensed data was presented. As an example of the utility of this approach, NDVI values for the 1,IFE experimental area were computed with input data of variable spatial resolution. The differences in the values of NDVI computed at different spatial resolutions were accurately predicted by an equation which quantified those differences in terms of variability in input observations.
    • INTEGRATED HYDROCHEMICAL MODELING OF AN ALPINE WATERSHED: SIERRA NEVADA, CALIFORNIA

      Wolford, Ross A.; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1992-12)
      Seasonally snow covered alpine areas play a larger role in the hydrologic cycle than their area would indicate. Their ecosystems may be sensitive indicators of climatic and atmospheric change. Assessing the hydrologic and bio- geochemical responses of these areas to changes in inputs of water, chemicals and energy should be based on a detailed understanding of watershed processes. This dissertation discusses the development and testing of a model capable of predicting watershed hydrologic and hydrochemical responses to these changes. The model computes integrated water and chemical balances for watersheds with unlimited numbers of terrestrial, stream, and lake subunits, each of which may have a unique, variable snow -covered area. Model capabilities include 1) tracking of chemical inputs from precipitation, dry deposition, snowmelt, mineral weathering, basefiow or flows from areas external to the modeled watershed, and user -defined sources and sinks, 2) tracking water and chemical movements in the canopy, snowpack, soil litter, multiple soil layers, streamflow, between terrestrial subunits (surface and subsurface movement), and within lakes (2 layers), 3) chemical speciation, including free and total soluble species, precipitates, exchange complexes, and acid -neutralizing capacity, 4) nitrogen reactions, 5) a snowmelt optimization procedure capable of exactly matching observed watershed outflows, and 6) modeling riparian areas. Two years of data were available for fitting and comparing observed and modeled output. To the extent possible, model parameters are set based on physical or chemical measurements, leaving only a few fitted parameters. The effects of snowmelt rate, rate of chemical elution from the snowpack, nitrogen reactions, mineral weathering, and flow routing on modeled outputs are examined.
    • Simulation Of Groundwater Flow In The Rincon Valley Area And Mesilla Basin, New Mexico And Texas

      Weeden, A. Curtis,Jr.; Maddock, Thomas, III; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1999-09-30)
      A groundwater flow model was constructed for the Rincon Valley area and Mesilla Basin. The system is dominated by the complex interaction of the Rio Grande, canals, laterals, and drains with groundwater pumping. The primary purpose of the model was to aid the New Mexico -Texas Water Commission in assessing options for water resources development in the Lower Rio Grand Basin from Caballo Reservoir in New Mexico to El Paso, Texas. One such assessment was to evaluate the effect of secondary irrigation releases from Caballo Reservoir on the water budget. In addition, the model will eventually be linked to a surface water model (BESTSM) being utilized by the New Mexico -Texas Water Commission to evaluate water supply alternatives for El Paso, Texas. Stress periods were specified on a seasonal basis, a primary irrigation season from March through October and a secondary irrigation season from November through February. Analysis of model output indicates that groundwater pumping decreases Rio Grande flows, secondary irrigation season releases do not alter the water budget significantly, and that recharge and discharge from aquifer storage are strongly related to the season.
    • APPLICATION OF BORON ISOTOPE RATIOS FOR IDENTIFYING NITRATE CONTAMINATION SOURCES IN THE GROUNDWATER OF AVRA VALLEY, ARIZONA

      Leenhouts, James Merrell; Basset, R. L.; Maddock, Thomas, III; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1994-06)
      The stable isotopes of the conservative element boron, 11B and 1°B, have been employed as co- migrating isotopic tracers to determine the origin of nitrate observed in groundwater from a large capacity (2500 gpm) irrigation well in the Avra Valley of southeastern Arizona. The isotopic ratios of the conservative element, boron, provided an identifying signature for various nitrate rich source waters. Additional chemical parameters were also examined to corroborate the isotopic indications. Findings of this investigation indicate that most of the nitrate observed in groundwater from well CMID 18 at the beginning of the 1993 irrigation season was due to municipal wastewater contamination. As the irrigation season progressed, an increasing proportion of nitrate was contributed by irrigation return flow from neighboring agricultural fields.
    • A Distributed Surface Temperature and Energy Balance Model of a Semi-Arid Watershed

      Washburne, James Clarke; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1994-05)
      A simple model of surface and sub -surface soil temperature was developed at the watershed scale ( -100 km2) in a semi -arid rangeland environment. The model consisted of a linear combination of air temperature and net radiation and assumed: 1) topography controls the spatial distribution of net radiation, 2) near- surface air temperature and incoming solar radiation are relatively homogeneous at the watershed scale and are available from ground stations and 3) soil moisture dominates transient soil thermal property variability. Multiplicative constants were defined to account for clear sky diffuse radiation, soil thermal inertia, an initially fixed ratio between soil heat flux and net radiation and exponential attenuation of solar radiation through a partial canopy. The surface temperature can optionally be adjusted for temperature and emissivity differences between mixed hare soil and vegetation canopies. Model development stressed physical simplicity and commonly available spatial and temporal data sets. Slowly varying surface characteristics, such as albedo, vegetation density and topography were derived from a series of Landsat TM images and a 7.5" USGS digital elevation model at a spatial resolution of 30 m. Diurnally variable atmospheric parameters were derived from a pair of ground meteorological stations using 30 -60 min averages. One site was used to drive the model, the other served as a control to estimate model error. Data collected as part of the Monsoon '90 and WG '92 field experiments over the ARS Walnut Gulch Experimental. Watershed in SE Arizona were used to validate and test the model. Point, transect and spatially distributed values of modeled surface temperature were compared with synchronous ground, aircraft and satellite thermal measurements. There was little difference between ground and aircraft measurements of surface reflectance and temperature which makes aircraft transects the preferred method to "ground truth" satellite observations. Mid- morning modeled surface temperatures were within 2° C of observed values at all but satellite scales, where atmospheric water vapor corrections complicate the determination of accurate temperatures. The utility of satellite thermal measurements and models to study various ground phenomena (eg. soil thermal inertia and surface energy balance) were investigated. Soil moisture anomalies were detectable, but were more likely associated with average near -surface soil moisture levels than individual storm footprints.
    • SIMULATION OF GROUND-WATER FLOW TO ASSESS THE EFFECTS OF PUMPING AND CANAL LINING ON THE HYDROLOGIC REGIME OF THE MESILLA BASIN: Dona Ana County, New Mexico & El Paso County, Texas

      Lang, Patrick T.; Maddock, Thomas, III; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1995-04)
      This study, which is to provide information to a settlement over the rights to water resources in the Mesilla Basin, uses a groundwater model to estimate how pumping in the basin affects the hydrologic regime.
    • COLLECTIVE UTILITY IN THE MANAGEMENT OF NATURAL RESOURCES: A SYSTEMS APPROACH

      Dupnick, Edwin Gene, 1943-; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1971-06)
      The main purpose of this report is to develop an economic theory, along the lines of the Bergson- Samuelson social welfare theory, to regulate the utilization of natural resources in the long -term interest of a political- economic group of individuals and firms. The theory, called Collective Utility, qualifies as a "systems approach" because of its inherent flexibility, generality, and comprehensiveness. Collective Utility is a function of individual satisfactions and firm revenues, which are, in general, contingent upon the actions of other individuals and /or firms. Such interactions are called externalities. It is the contention of this report that efficient management of natural resources will follow from efficient control of externalities. A taxation - subsidy structure is suggested as an efficient control and the complete mathematics of determining and implementing such a structure are provided. Finally, the idea of externalities is integrated within the framework of Collective Utility to form an optimal policy for the utilization of natural resources using the techniques of calculus of variations.
    • DESIGN OF WATER RESOURCES SYSTEMS IN DEVELOPING COUNTRIES: THE LOWER MEKONG BASIN

      Chaemsaithong, Kanchit,1940-; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1973-06)
      This study focuses on the design of water resources systems in developing nations with particular reference to the development of water resources in the Lower Mekong Basin (Khmer Republic, Laos, Thailand, and Republic of South Viet -Nam). The determination of the "best" system in terms of social goals reflecting the economic and social environment of the Mekong countries is the main issue of this dissertation. The imperfection of the usual technique for planning water resources systems, namely, cost -benefit analysis, leads to the use of the standardized cost -effectiveness methodology. To illustrate how the design is accomplished, two distinctly different structural alternatives of possible development in the Lower Mekong Basin are defined. The design process starts from the statements of goals or objectives of water resources development, which are then mapped onto specifications sets in which social needs are represented. Next, the capabilities of alternative systems are determined through simulation in which three 50 -year sequences of synthetic streamflow are generated by a first order autoregressive scheme. The two alternatives are then compared using both quantitative and qualitative criteria. To illustrate how a decision in selecting an alternative system could be reached, ranking of criteria by order of preference is demonstrated. With the choice of either a fixed -cost or fixed- effectiveness approach, the decision to select the best alternative system could be made. At this point, the use of a weighting technique, which is a common fallacy of systems analysis, will be automatically eliminated. The study emphasizes that a systematic design procedure of water resources systems is provided by the standardized cost- effectiveness approach, which possesses several advantages. The approach will suggest and help identify the system closest to meeting the desired economic and social goals of the developing countries in the Lower Mekong Basin. In this connection, the approach will help governments in the preparation of programming and budgeting of capital for further investigations and investments. It is believed that the approach will eliminate unnecessary expenses in projects that are planned on an individual basis or by methods used at present. Further, the approach provides an appropriate mechanism for generating essential information in the decision process. Both quantifiable and non -quantifiable criteria are fully considered. The choice of a fixed -cost or fixed -effectiveness approach will determine the trade -off between these criteria. The study recognizes that research to determine appropriate hydrologic models for monthly streamfiow generation for tributary projects in the Basin is necessary. This leads to another important area of research which is to find the appropriate number of monthly sequences of streamflow to be generated in relation to number of states and decision variables. Research on the design of computer experiments is necessary to improve simulation as a tool to estimate the quantitative effects of a given project.
    • BAYESIAN DECISION ANALYSIS OF A STATISTICAL RAINFALL/RUNOFF RELATION

      Gray, Howard Axtell; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1972-10)
      The first purpose of this thesis is to provide a framework for the inclusion of data from a secondary source in Bayesian decision analysis as an aid in decision making under uncertainty. A second purpose is to show that the Bayesian procedures can be implemented on a computer to obtain accurate results at little expense in computing time. The state variables of a bridge design example problem are the unknown parameters of the probability distribution of the primary data. The primary source is the annual peak flow data for the stream being spanned. Information pertinent to the choice of bridge design is contained in rainfall data from gauges on the watershed but the distribution of this secondary data cannot be directly expressed in terms of the state variables. This study shows that a linear regression equation relating the primary and secondary data provides a means of using secondary data for finding the Bayes risk and expected opportunity loss associated with any particular bridge design and single new rainfall observation. The numerical results for the example problem indicate that the information gained from the rainfall data reduces the Bayes risk and expected opportunity loss and allows for a more economical structural design. Furthermore, the careful choice of the numerical methods employed reduces the computation time for these quantities to a level acceptable to any budget.
    • COLORADO RIVER TRIPS WITHIN THE GRAND CANYON NATIONAL PARK AND MONUMENT: A SOCIO-ECONOMIC ANALYSIS

      Boster, Mark Alan,1948-; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1972-06)
      The recreational use of the Colorado River within the Grand Canyon National Park and National Monument increased on the order of 60 to 70 per cent during each year of the interval 1967 to 1970. Consequently, the U. S. National Park Service instituted user limits to protect and preserve the area commencing with the 1971 season. This limit was established with limited data on the users of the river or about their perceptions of the trip experience. A need existed to collect and analyze this type of data, and to suggest possible management alternatives. This study used a mailed questionnaire to a random sample of past participants in order to collect basic socio-economic data. The analysis was based on a 65% response rate, and consisted of individual question tabulation and multivariate data -cluster analysis. The data show background characteristics of the participants, reasons for taking the trip, reactions to the experience, perceptions of problems associated with the trips, reactions to crowded conditions, and needs for regulatory policy concerning user intensities.
    • A MATHEMATICAL MODEL OF PRIMARY PRODUCTIVITY AND LIMNOLOGICAL PATTERNS IN LAKE MEAD

      Everett, Lorne G.; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1972-09)
      The temporal and spatial changes in chemical and biological properties of Lake Mead have been investigated, thereby indicating the sources of water pollution and the time of highest pollution potential. Planktonic organisms have been shown to indicate the presence of water problems. Macro- and micro-nutrient analyses have shown that primary productivity is not inhibited by limiting concentrations. A mathematical model has been developed, tested with one set of independent data, and shown worthy of management utility. Although the model works very well for the Lake Mead area, the physical reality of the Multiple Linear Regression equation should be tested on independent data.
    • A CONTINUOUS REVIEW INVENTORY MODEL FOR IRRIGATION WATER APPLICATION

      Cali, Mary Alice,1951-; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1975-05)
      This thesis is concerned with the problem of determining an optimal irrigation policy, that is, an optimal quantity and frequency of irrigation water application. The purpose is to present a solution to this problem using a continuous review model of an inventory system. Initially, the functions of the plant -water -soil system are discussed. This is followed by a review of several existing methods for maximizing crop yield or profit by determining an optimal irrigation policy. Next, the inventory problem is briefly examined. An analogy is drawn between the farmer's problem of determining an optimal irrigation policy and the businessman's problem of determining an optimal ordering policy. Subsequently, a continuous review model of the irrigation system is developed and an example of its use is given.
    • COUPLING STOCHASTIC AND DETERMINISTIC HYDROLOGIC MODELS FOR DECISION-MAKING

      Mills, William Carlisle; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1980-06)
      Many planning decisions related to the land phase of the hydrologic cycle involve uncertainty due to stochasticity of rainfall inputs and uncertainty in state and knowledge of hydrologic processes. Consideration of this uncertainty in planning requires quantification in the form of probability distributions. Needed probability distributions, for many cases, must be obtained by transforming distributions of rainfall input and hydrologic state through deterministic models of hydrologic processes. Probability generating functions are used to derive a recursive technique that provides the necessary probability transformation for situations where the hydrologic output of interest is the cumulative effect of a random number of stochastic inputs. The derived recursive technique is observed to be quite accurate from a comparison of probability distributions obtained independently by the recursive technique and an exact analytic method for a simple problem that can be solved with the analytic method. The assumption of Poisson occurrence of rainfall events, which is inherent in derivation of the recursive technique, is examined and found reasonable for practical application. Application of the derived technique is demonstrated with two important hydrology- related problems. It is first demonstrated for computing probability distributions of annual direct runoff from a watershed, using the USDA Soil Conservation Service (SCS direct runoff model and stochastic models for rainfall event depth and watershed state. The technique is also demonstrated for obtaining probability distributions of annual sediment yield. For this demonstration, the-deterministic transform model consists of a parametric event -based sediment yield model and the SCS models for direct runoff volume and peak flow rate. The stochastic rainfall model consists of a marginal Weibull distribution for rainfall event duration and a conditional log -normal distribution for rainfall event depth, given duration. The stochastic state model is the same as used for the direct runoff application. Probability distributions obtained with the recursive technique for both the direct runoff and sediment yield demonstration examples appear to be reasonable when compared to available data. It is, therefore, concluded that the recursive technique, derived from probability generating functions, is a feasible transform method that can be useful for coupling stochastic models of rainfall input and state to deterministic models of hydrologic processes to obtain probability distributions of outputs where these outputs are cumulative effects of random numbers of stochastic inputs.