Now showing items 41-60 of 104


      Metler, William Arledge, 1944-; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1973-02)
      This thesis defines a methodology for the evaluation of the worth of streamflow data using a Bayes risk approach. Using regional streamflow data in a regression analysis, the Bayes risk can be computed by considering the probability of the error in using the regionalized estimates of bridge or culvert design parameters. Cost curves for over- and underestimation of the design parameter can be generated based on the error of the estimate. The Bayes risk can then be computed by integrating the probability of estimation error over the cost curves. The methodology may then be used to analyze the regional data collection effort by considering the worth of data for a record site relative to the other sites contributing to the regression equations. The methodology is illustrated by using a set of actual streamflow data from Missouri. The cost curves for over- and underestimation of the streamflow design parameter for bridges and culverts are hypothesized so that the Bayes risk might be computed and the results of the analysis discussed. The results are discussed by demonstrating small sample bias that is introduced into the estimate of the design parameter for the construction of bridges and culverts. The conclusions are that the small sample bias in the estimation of large floods can be substantial and that the Bayes risk methodology can evaluate the relative worth of data when the data are used in regionalization.

      Sagar, Budhi,1943-; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1973-06)
      The main aim of this study is to develop a suitable method for the calibration and validation of mathematical models of large and complex aquifer systems. Since the calibration procedure depends on the nature of the model to be calibrated and since many kinds of models are used for groundwater, the question of model choice is broached first. Various aquifer models are critically reviewed and a table to compare them as to their capabilities and limitations is set up. The need for a general calibration method for models in which the flow is represented by partial differential equations is identified from this table. The calibration problem is formulated in the general mathematical framework as the inverse problem. Five types of inverse problems that exist in modeling aquifers by partial differential equations are identified. These are, to determine (1) parameters, (2) initial conditions, (3) boundary conditions, (4) inputs, and (5) a mixture of the above. Various methods to solve these inverse problems are reviewed, including those from fields other than hydrology. A new direct method to solve the inverse problem (DIMSIP) is then developed. Basically, this method consists of transforming the partial differential equations of flow to algebraic equations by substituting in them the values of the various derivatives of the dependent variable (which may be hydraulic pressure, chemical concentration or temperature). The parameters are then obtained by formulating the problem in a nonlinear optimization framework. The method of sequential unconstrained minimization is used. Spline functions are used to evaluate the derivatives of the dependent variable. Splines are functions defined by piecewise polynomial arcs in such a way that derivatives up to and including the order one less than the degree of polynomials used are continuous everywhere. The natural cubic splines used in this study have the additional property of minimum curvature which is analogous to minimum energy surface. These and the derivative preserving properties of splines make them an excellent tool for approximating the dependent variable surfaces in groundwater flow problems. Applications of the method to both a test situation as well as to real -world data are given. It is shown that the method evaluates the parameters, boundary conditions and inputs; that is, solves inverse problem type V. General conditions of heterogeneity and anisotropy can be evaluated. However, the method is not applicable to steady flows and has the limitation that flow models in which the parameters are functions of the dependent variable cannot be calibrated. In addition, at least one of the parameters has to be preassigned a value. A discussion of uncertainties in calibration procedures is given. The related problems of model validation and sampling of aquifers are also discussed.
    • Investigations into the availability of additional water supplies and water storage areas for the Santa Cruz active management area, Arizona

      Pranschke, Stephanie; Mac Nish, Robert D.; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 2002)
      The desert climate of Southern Arizona coupled with the overdraft of its groundwater resources, led to the passing of the 1980, Groundwater Management Act. The Act mandates the creation of management plans in designated areas of heavy overdraft. Of the four initial Active Management Areas (AMAs, three had management plans that were designed to secure sustainable yield of the aquifer by 2025. In 1994, the Arizona legislature created a fifth AMA by designating the southern part of the Tucson AMA as the Santa Cruz AMA (SCAMA). The purpose for this subdivision was to facilitate the bi- national negotiations for coordinated water resource management in this internationally shared basin. Additionally, the SCAMA is to coordinate the management of surface water and groundwater rights for public health, safety and welfare. A.R.S. § 45-411.04. The legislature also assigned the SCAMA the management goals of maintaining safe -yield conditions and preventing long -term declines in local water table levels. A.R.S. § 45- 562(C) (ADWR, 1999). This study is a result of a grant award from the 1999 Augmentation and Conservation Assistance Program in an attempt to investigate the availability of additional water supplies and water storage areas within the SCAMA.
    • Effluent recharge to the Upper Santa Cruz River floodplain aquifer, Santa Cruz county, Arizona

      Scott, Paul S.; Mac Nish, Robert D.; Maddock, Thomas, III; Department of Hydrology & Water Resources, The University of Arizona; Arizona Research Laboratory for Riparian Studies (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1997)
      The City of Nogales, Arizona, is in the Santa Cruz Active Management Area and is subject to the assured water supply and conservation mandates of the 1980, Groundwater Management Act (State of Arizona, 1980). The primary water supply for both Nogales Arizona, and Nogales, Sonora, (commonly referred to as Ambos Nogales) is groundwater pumped from the shallow alluvial aquifers which underlie the Upper Santa Cruz River in Arizona and Mexico, and its tributaries (principally Nogales Wash and Potrero Creek). Nogales, Sonora also obtains water from the Los Alisos Basin, which is south of the Santa Cruz Basin in Mexico (Carruth, 1995). The NIWTP provides wastewater treatment for Ambos Nogales, and discharges treated wastewater to the Upper Santa Cruz River near the confluence with Nogales Wash and Sonoita Creek. The discharge of effluent creates an intermittent stream from the NIWTP outfall for approximately 13 river miles to Tubac, Arizona. The conservation mandates of the 1980, Groundwater Management Act (State of Arizona, 1980) require the City of Nogales, Arizona to prove the existence of a 100-year water supply as a condition for future growth. The Act also allows Nogales, Arizona to receive recharge credits for the portion of effluent that recharges the aquifer underlying the Santa Cruz River. The recharge credits will be used by the City of Nogales as partial proof of a 100-year water supply (Carruth, 1995).
    • Advances in seasonal forecasting for water management in Arizona: a case study of the 1997-98 El Niño

      Pagano, Thomas; Hartmann, Holly; Sorooshian, Soroosh; Bales, Roger; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1999-11)
      This 1997-98 El Niño provided a unique opportunity for climate information and forecasts to be utilized by water management agencies in the Southwestern U.S. While Arizona has experienced high streamflow associated with previous El Niño events, never before had an event of such magnitude been predicted with advance warning of several months. Likewise, the availability of information, including Internet sources and widespread media coverage, was higher than ever before. Insights about use of this information in operational water management decision processes are developed through a series of semi -structured in -depth interviews with key personnel from a broad array of agencies responsible for emergency management and water supply, with jurisdictions ranging from urban to rural and local to regional. The interviews investigate where information was acquired, how it was interpreted and how it was incorporated into specific decisions and actions. The interviews also investigate agency satisfaction with the products available to them, their operational decisions, and intentions to utilize forecast products in the future. Study findings lead to recommendations about how to more effectively provide intended users of forecasts with information required to enact mitigation measures and utilize opportunities that some climatic events present. The material presented in this report is primarily based on the Masters Thesis of Thomas Pagano.
    • Deciding to Recharge

      Eden, Susanna; Davis, Donald R.; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1999-12)
      Public water policy decision making tends to be too complex and dynamic to be described fully by traditional, rational models. Information intended to improve decisions often is rendered ineffective by a failure to understand the process. An alternative, holistic description of how such decisions actually are made is presented here and illustrated with a case study. The role of information in the process is highlighted. Development of a Regional Recharge Plan for Tucson, Arizona is analyzed as the case study. The description of how decisions are made is based on an image of public water policy decision making as 1) a structured, nested network of individuals and groups with connections to their environment through their senses, mediated by their knowledge; and 2) a nonlinear process in which decisions feed back to affect the preferences and intentions of the people involved, the structure of their interactions, and the environment in which they operate. The analytical components of this image are 1) the decision makers, 2) the relevant features of their environment, 3) the structure of their interactions, and 4) the products or outputs of their deliberations. Policy decisions analyzed by these components, in contrast to the traditional analysis, disclose a new set of relationships and suggest a new view of the uses of information. In context of information use, perhaps the most important output of the decision process is a shared interpretation of the policy issue. This interpretation sets the boundaries of the issue and the nature of issue-relevant information. Participants are unlikely to attend to information incompatible with the shared interpretation. Information is effective when used to shape the issue interpretation, fill specific gaps identified as issue-relevant during the process, rationalize choices, and reshape the issue interpretation as the issue environment evolves.
    • Analysis of hydrologic data collected by the U.S. Bureau of Land Management 1987-1995 and recommendations for future monitoring programs

      Sharma, Vandana; Mac Nish, Robert D.; Maddock, Thomas, III; Department of Hydrology & Water Resources, The University of Arizona; Arizona Research Laboratory for Riparian Studies (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1997)
      The purpose of this study was to establish a more efficient monitoring program for the San Pedro Riparian National Conservation Area (SPRNCA). This report analyzes data on stream flow measurements taken at nine locations on the San Pedro river and one location on the Babocomari river and ground water levels in eighteen wells collected by the BLM over the period from 1987 to 1995 and discusses possible causes for trends and anomalies in the data. The report also recommends future data collection and analytical efforts. All of the stream discharge data and some of the groundwater levels were collected at discrete and unsystematic intervals, and further, the streamflow measurements may not have been collected at the same location at each site. Surface water flow was measured by a Marsh- McBirney flow meter.

      Baird, Kathryn J.; Ronayne, Michael J.; Maddock, Thomas, III; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1997-01)
      This report is in two parts. The first part covers the ecological processes pertinent to the restoration of Bingham Cienega. The second part presents a subregional groundwater flow model for analyzing the water budget, stream and spring behavior, and water table configuration. Because of the sparsity of ecological and hydrologic data, both parts must be considered as preliminary studies.

      Winchell, Michael; Gupta, Hoshin Vijai; Sorooshian, Soroosh; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1997)
      Runoff generation has been shown to be very sensitive to precipitation input. With the use of precipitation estimates from weather radar, errors are introduced from both the transformation from reflectivity to precipitation rate and the spatial and temporal aggregation of the radar product. Currently, a significant degree of uncertainty exists in the accuracy of radar-based precipitation estimates. When uncalibrated or poorly calibrated radar products were used as input to a rainfall-runoff model, the resulting predicted runoff varied severely from the runoff generated using well-calibrated radar products. Another source of uncertainty, errors in the precipitation system structure due to aggregation in time and space, has also been shown to affect runoff generation. This study focuses on separating the primary runoff- generating mechanisms -- infiltration excess and saturation excess -- to assess their responses to variable precipitation inputs individually. For the case of saturation excess runoff, there was minimal sensitivity due to temporal aggregation of the precipitation; however, there was considerable sensitivity to spatial aggregation. For the case of infiltration excess runoff, temporal and spatial aggregation of the precipitation significantly reduced the amount of runoff produced. The magnitudes of these runoff reductions varied between storms and showed a high degree of dependence on storm characteristics, particularly the maximum precipitation intensity.
    • Investigation of the national weather service soil moisture accounting models for flood prediction in the northeast floods of january 1996

      Hogue, Terri S.; Sorooshian, Soroosh; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1999-10)
      Extensive flooding occurred throughout the northeastern United States during January of 1996. The flood event cost the lives of 33 people and over a billion dollars in flood damage. Following the `Blizzard of `96 ", a warm front moved into the Mid-Atlantic region bringing extensive rainfall and causing significant melting and flooding to occur. Flood forecasting is a vital part of the National Weather Service (NWS) hydrologic responsibilities. Currently, the NWS River Forecast Centers use either the Antecedent Precipitation Index (API) or the Sacramento Soil -Moisture Accounting Model (SAC-SMA). This study evaluates the API and SAC -SMA models for their effectiveness in flood forecasting during this rain -on -snow event. The SAC -SMA, in conjunction with the SNOW-17 model, is calibrated for five basins in the Mid -Atlantic region using the Shuffled Complex Evolution (SCE-UA) automatic algorithm developed at the University of Arizona. Nash-Sutcliffe forecasting efficiencies (Ef) for the calibration period range from 0.79 to 0.87, with verification values from 0.42 to 0.95. Flood simulations were performed on the five basins using the API and calibrated SAC-SMA model. The SAC-SMA model does a better job of estimating observed flood discharge on three of the five study basins, while two of the basins experience flood simulation problems with both models. Study results indicate the SAC-SMA has the potential for better flood forecasting during complex rain-on-snow events such as during the January 1996 floods in the Northeast.
    • Hydrogeology in the United States 1780-1950

      Davis, Stanley N.; Davis, Augusta G.; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 2005-11)
      Most modern textbooks that deal with subsurface water, or hydrogeology, include a brief summary of the historical development of the science. In our book, we have expanded on this general theme without introducing the more technical aspects of the topic. We have, however, emphasized two important points that are commonly overlooked. First, most of the fundamental contributions made during the 1800's were not American but were primarily European. Second, 1885 was the date of the first ground -water publication of the United States Geological Survey, but it did not mark the birth of hydrogeology in the United States. Some American contributions were made about 80 years earlier. The authors are grateful for the assistance of many individuals. T. N. Narasimhan, M. P. Anderson, F. M. Phillips, D. B. Stephens, J. V. Brahana, C. W. Fetter, D. Deming, and D. I. Siegel were given the initial version of our book and provided numerous useful comments.
    • A lower San Pedro river basin groundwater flow model

      Whittier, Jonathan Douglas; Maddock, Thomas, III; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 2004)
      Water issues in the Lower San Pedro River basin in southeastern Arizona are becoming increasingly contentious as urban development, agriculture, and mining needs compete with the needs of the riparian habitat. To better understand the water demands in this basin, a new groundwater flow model has been created. First, the conceptual model was produced using various Geographic Information System (GIS) applications. A new method allocating digital precipitation data to the smaller drainages within the watershed was used to estimate mountain front recharge. Well data was gathered from both the United States Geological Survey (USGS) and Arizona Department of Water Resources (ADWR). Depth to bedrock was interpolated from an earlier gravity survey of the area. The current extent of riparian vegetation was determined by recent United States Forest Service aerial photography. GIS shapefiles were created depicting the data necessary for MODFLOW. Second, the numerical MODFLOW model was formed using GMS (Groundwater Modeling System), a graphical user interface for MODFLOW. GMS was used to create the grid, allocate the information from the shapefiles into MODFLOW input files, create the MODFLOW numerical model, and calibrate the model. The model results project potential impacts to the overall sustainability of groundwater within the basin. In the future, the model will be used as an administrative tool to assess alternative land management scenarios and their abilities to sustain or improve the riparian habitat along the San Pedro River.
    • Application of snow distribution models within the laguna Negra basin, Chile

      Cadle, Brad J.; Bales, Roger C.; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1997-08)
      Spectral linear unmixing and binary regression trees were used to estimate the distribution of snow within the Laguna Negra basin in Chile. Spectral linear unmixing was performed for multi-band Landsat 5 images for the determination of sub-pixel snow fractions. We were interested in determining the number of bands needed for an adequate distribution of SCA. Results showed that for winter scenes (scenes with greater than 90% snow cover and portions of the basin covered by shadows) linear spectral unmixing can be used to model SCA using at least four bands with a rock, a snow and a shaded snow endmember, but that five bands, using two rock endmembers, a snow and a shaded rock endmember, are needed for the fall scenes (scenes with less than 10% snow cover and portions of the basin covered by shadows). The spring scenes (scenes with 50 percent and higher snow cover and no shadows) showed plausible results with three bands, but the need for a second rock endmember in the fall scenes suggest 4 bands may give a more accurate result. A binary regression tree model was used to determine distributed SWE at peak accumulation in the Echaurren basin, a sub basin of Laguna Negra. Regression trees grown from field snow survey data did an excellent job at explaining the variation of SWE in two of the three surveys examined when resubstitution was used to evaluate the model, but did a poor job in all cases when cross validation was used. However, cross validation may over estimate the errors associated with the model. Basin-wide SWE maps resulting from the application of the regression trees formed plausible structures. Normalized snow distribution was sufficiently different between years such that a "typical" SWE map could not be developed. Nonetheless, there were identifiable patterns that did occur in the SWE distributions from different years that gave insight into the factors affecting SWE in the basin. Such factors include a strong dependance on radiation in the lower portion of Echaurren for two of the years, and the presence of heavy SWE regions near cliffs. Insights such as these provided useful information on how the type of data and method of collection might be improved. The large SWE values near cliffs, for instance, suggest that use of an avalanche map might improve the modeled SWE distribution. The dependance of SWE on radiation in the lower basin suggest the SWE data should be obtained over the entire range of radiation values in the lower basin.
    • MR2K: A program to calculate drawdown, velocity, storage and capture response functions

      Maddock, Thomas, III; Lacher, Laurel J.; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 2008)
      A program, MR2K, used for calculating drawdown, velocity, storage loss, and capture response functions for multi -aquifer groundwater flow systems was developed. Capture is defined as the sum of the increase in aquifer recharge and decrease in aquifer discharge as a result of an applied stress from groundwater pumping. The capture phenomena treated are stream-aquifer leakance, reduction of evapotranspiration losses, reduction of drain flows, flows to and from prescribed head boundaries, and increases or decreases in natural recharge or discharge from head-dependent boundaries. The response functions are independent of the magnitude of the pumping stresses, and are dependent on the type of partial differential equation, boundary and initial conditions and the parameters thereof, and the spatial and temporal locations of stresses. The aquifers modeled may have irregular- shaped boundaries and nonhomogeneous transmissive and storage qualities. The stresses are groundwater withdrawals from wells. The utility of response functions arises from their capacity to be embedded in management models such as decision support systems. The response functions are incorporated into the objective function or constraints that couple the hydrologic system with the management system. Three response -function examples are presented for a hypothetic basin.
    • A riparian evapotranspiration package for MODFLOW-2000 and MODFLOW-2005

      Maddock, Thomas, III; Baird, Kathryn J.; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 2008-03)
      A new version of an evapotranspiration package for the U.S. Geological Survey's groundwater -flow model, MODFLOW, is documented. The Riparian Evapotranspiration Package (RIP-ET) provides flexibility in simulating riparian and wetland evapotranspiration (ET) not provided by the MODFLOW -2000 and MODFLOW 2005 traditional Evapotranspiration (EVT) Package, nor by the MODFLOW-2000 Segmented Function Evapotranspiration (ETS1) Package. This report describes how the package was conceptualized and provides input instructions, listings and explanations of the source code, and an example simulation. Traditional approaches to modeling ET processes assume a piecewise linear relationship between ET flux rate and hydraulic head. The RIP-ET replaces this traditional relationship with a segmented, nonlinear dimensionless curve that reflects the eco-physiology of riparian and wetland ecosystems. Evapotranspiration losses from these ecosystems are dependent not only on hydraulic head but on the plant types present. User -defined plant functional groups (PFGs) are used to elucidate the interactive processes of plant ET with groundwater conditions. Five generalized plant functional groups based on transpiration rates, plant rooting depth, and water tolerance ranges are presented: obligate wetland, shallow-rooted riparian, deep- rooted riparian, transitional riparian and bare ground /open water. Plant functional groups can be further divided into subgroups (PFSG) based on plant size, density or other user defined field. The RIP -ET allows for partial habitat coverage and mixtures of plant functional subgroups to be present in a single model cell. Habitat areas are designated by polygons. A polygon can contain a mixture of PFSGs and bare ground, and is assigned a calculated land surface elevation. This process requires a determination of fractional coverage for each of the plant functional subgroups present in a polygon to simulate the mixture of coverage types and resulting ET. The fractional cover within a cell has two components: 1) the polygonal fraction of active habitat in a cell, and 2) fraction of plant flux area in a polygon. The RIP -ET determines the ET rate for each plant functional group in a cell, the total ET in the cell, and the total ET rate over the region of simulation.
    • Simulation of groundwater conditions in the Colorado River Delta, Mexico

      Feirstein, Eden Jael; Zamora, Francisco; Vionnet, Leticia Beatriz; Maddock, Thomas, III; Department of Hydrology & Water Resources, The University of Arizona; Sonoran Institute; Facultad de Ingeniería y Ciencias Hídricas (FICH) - Universidad Nacional del Litoral (UNL) (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 2008-05)
      The Colorado River Delta (CRD) is a large sedimentary complex within a tectonically active structurally controlled basin. The CRD lies across the U.S.-Mexico international boundary and is traversed by the Colorado River on is way to the Gulf of California. Multidisciplinary research addressing the impact of the hydrologic change in the CRD has been increasing since the 1980's. To help expand the base of this knowledge, a groundwater model for the CRD within Mexico was developed. A conceptual model was constructed and transformed within the Department of Defense Groundwater Modeling Software (GMS) into a numerical model using the MODFLOW 2005 code made available by the U.S. Geological Survey. Model results indicates that large scale flood events on the Colorado River act as a recharge to the aquifer and show that the relationship between groundwater withdrawals and capture are evident on an seasonal scale. The model will form the parent basis for further Delta studies using the Local Grid Refinement (LRG), a methodology inherent to MODFLOW 2005.
    • An evaluation of hydrologic and riparian resources in Saguaro National Park, Tucson, Arizona

      Baird, Kathryn J.; Mac Nish, Robert; Guertin, D. Philip; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 2001)
      Within Saguaro National Park only Rincon Mountain District contains significant riparian areas. The geologic framework of the Tanque Verde Ridge and Rincon Valley exerts strong control on the hydrology of these riparian systems. Pantano fault constitutes a line of hydrogeologic separation between the occurrence and utilization of groundwater in the Rincon Valley and the main Tucson basin. No known, comparable fault isolates the upper Tanque Verde Creek alluvium from downstream pumping effects. However, east of the confluence with Agua Caliente Wash, the highly permeable alluvial materials are much thinner, and serve to dampen such downstream effects. Therefore, the ground water reservoirs supporting the riparian areas within Rincon Mountain District are not directly connected to the Tucson basin aquifer. In what is described herein as upper basin areas, high gradient tributary streams to Tanque Verde Creek and Rincon Creek have discontinuous bodies of shallow alluvium interspersed with bedrock channel. Alluvium has accumulated behind small faults or resistant bedrock ledges and contains shallow ground water basins that support small pockets of riparian or xeroriparian vegetation. The ground water in these small basins is sustained by seeps or springs, and by runoff from precipitation and is not likely to be connected to a regional ground water system. In what we have characterized as middle basin areas, the stream gradients are less than 25m/km. In these low gradient reaches, the alluvial floodplain sediments are continuous, though not thick, as ledges of more resistant bedrock formations appear in the stream channel. These low gradient reaches contain larger volumes of ground water than the high gradient basins and support more robust riparian vegetation. The ground water in the low gradient reaches is believed to be connected to the regional ground water system. Such a low gradient reach exists in a tributary to Tanque Verde Creek about 1.4 km east of Wentworth Road and extends about 1.6 km into the Park. A similar low gradient reach occurs along Rincon Creek in the Expansion Area, and at the mouths of Chiminea and Madrona Creeks.
    • Nonlocal and localized finite element solution of conditional mean flow in randomly heterogeneous media

      Guadagnini, Alberto; Neuman, Shlomo P.; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1997-09)
      This report considers the effect of measuring randomly varying local hydraulic conductivities K(x) on one's ability to predict deterministically, without upscaling, steady state flow in bounded domains driven by random source and boundary terms. Our aim is to allow optimum unbiased prediction of hydraulic heads h(x) and Darcy fluxes q(x) by means of their ensemble moments, , and c, conditioned on measurements of K(x). It has been shown earlier that these predictors satisfy a deterministic flow equation which contains an integro-differential "residual flux" term. This term renders c nonlocal and non-Darcian so that the concept of effective hydraulic conductivity looses meaning in all but a few special cases. Instead, the residual flux contains kernels which constitute nonlocal parameters that are conditional on hydraulic conductivity data and therefore nonunique. The kernels include symmetric and nonsymmetric second -rank tensors as well as vectors. We derive exact integro-differential equations for second conditional moments of head and flux which constitute measures of predictive uncertainty. We then develop recursive closure approximations for the moment equations through expansion in powers of a small parameter ay which represents the standard estimation error of In K(x). Finally, we solve these nonlocal equations to first order in a by finite elements on a rectangular grid in two dimensions. We also solve the original stochastic flow equations by conditional Monte Carlo simulation using finite elements on the same grid. Upon comparing our nonlocal finite element and conditional Monte Carlo results we find that the former are highly accurate, under either mean uniform or convergent flows, for both mildly and strongly heterogeneous media with a as large as 4 - 5 and spatial correlation scales as large as the length of the domain. Since conditional mean quantities are smooth relative to their random counterparts our method allows, in principle, resolving them on relatively coarse grids without upscaling. We also examine the quc on under what conditions can the residual flux be localized so as to render it approximately Darcian. One way to achieve such localization is to treat ' "draulic conductivity as if it was locally homogeneous and mean flow as if it was locally uniform. This renders the flux predictor Darcian according to c _ - Kc(x) \7c where Kc(x) is a conditional hydraulic conductivity tensor which depends on measurements of K(x) and is therefore a nonunique function of space. This function can be estimated by means of either stochastically- derived analytical formulae or standard inverse methods (in which case localization coincides with common groundwater modeling practice). We use the first approach and solve the corresponding localized conditional mean equation by finite elements on the same grid as before. Here the conditional hydraulic conductivity is given by the geometric mean KG(x). Upon comparing our localized finite element solution with a nonlocal finite element solution and conditional Monte Carlo results, we find that the first is generally less accurate than the second. The accuracy of the localized solution deteriorates rel tive to that of the nonlocal solution as one approaches points of conditioning and singularity, or as the variance and correla': ^n scale of the log hydraulic conductivity increase. Contrary to the nonlocal solution, locàlzation does not yield information about predictive uncertainty.
    • Stochastic analysis of moisture plume dynamics of a field injection experiment

      Ye, Ming; Khaleel, Raziuddin; Yeh, Tian-Chyi J.; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 2004-10)
      A vadose zone field injection experiment was conducted in the summer of 2000 at theHanford Site, Washington. The unique moisture content database is used to identify the lithology at the field site and to interpret, visualize, and quantify the spatio- temporal evolution of the three -dimensional (3 -D) moisture plume created by the injection experiment. We conducted a hierarchical geostatistical analysis to examine the large -scale geologic structure for the entire field site, and then investigate small -scale features within different layers. Afterward, variogram analysis is applied to the O field measured for seven different days during the injection experiment. Temporal variations of sills and ranges are related to the observed moisture plume dynamics. A visualization of the 3 -D moisture plume evolution illustrates effects of media heterogeneity. Statistics of changes in moisture content as a function of distance reveals large variance near the wetting front and the coefficient of variation increases with decreasing mean.These findings support the gradient- and mean -dependent variability in the moisture content distribution as reported by existing stochastic theories. Spatial moment analysis is also conducted to quantify the rate and direction of movement of the plume mass center and its spatial spreading. The ratio of horizontal to vertical spreading at varying moisture contents suggests moisture- dependent anisotropy in effective unsaturated hydraulic conductivity, confirming existing stochastic theories. However, the principal directions of the spatial moments are found to vary as the moisture plume evolves through local heterogeneity, a feature that has not been recognized in the theories.
    • A multi-step automatic calibration scheme (MACS) for river forecasting models utilizing the national weather service river forecast system (NWSRFS)

      Sorooshian, Soroosh; Gupta, Hoshin; Hogue, Terri S.; Holz, Andrea; Braatz, Dean; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1999-10)
      Traditional model calibration by National Weather Service (NWS) River Forecast Center (RFC) hydrologists involves a laborious and time -consuming manual estimation of numerous parameters. The National Weather Service River Forecasting System (NWSRFS), a software system used by the RFCs for hydrologic forecasting, includes an automatic optimization program (OPT3) to aid in model calibration. The OPT3 program is not used operationally by the majority of RFC hydrologists who perform calibration studies. Lack of success with the traditional single - step, single-criterion automatic calibration approach has left hydrologists more comfortable employing a manual step-by-step process to estimate parameters. This study develops a Multistep Automatic Calibration Scheme (MACS), utilizing OPT3, for the river forecasting models used by the RFCs: the Sacramento Soil Moisture Accounting (SAC-SMA). and SNOW-17 models. Sixteen parameters are calibrated in three steps, replicating the progression of manual calibration steps used by NWS hydrologists. MACS is developed by minimizing different objective functions for different parameters in a step -wise manner. Model runs are compared using the MACS optimized parameters and the manually estimated parameters for six basins in the North Central River Forecast Center (NCRFC) forecast area. Results demonstrate that the parameters obtained via the MACS procedure generally yield better model performance than those obtained by manual calibration. The MACS methodology is a time-saving approach that can provide prompt model forecasts for NWS watersheds.