Author
Goebel, WalterAffiliation
DFVLR - German Aerospace Research EstablishmentIssue Date
1984-10
Metadata
Show full item recordRights
Copyright © International Foundation for TelemeteringCollection Information
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.Abstract
For maritime applications of distress communications via geostationary satellites a special method of signal processing was developed, called superposition technique. The data frame containing the alert message is transmitted from a distress equipment repeatedly. After being relayed by the satellite the signal is detected and improved by superimposing the frames. Around 14 dB is the actual processing gain. Thus a distress buoy is able to transfer a message from all over the world with high reliability by only transmitting a power of 50 mW omnidirectionally over a slant range of about 40 000 km. The described system, called the Distress Radio Call System (DRCS) was tested in a Coordinated Trials Program (CTP) of 6 nations. Both in a simulation phase and in a field test under exactly the same environmental conditions the DRCS with its superposition technique was able to detect signals with lowest signal-to-noise-density ratio without error. In laboratory tests using GAUSS channel conditions, a system threshold of 13 dB-Hz could be demonstrated. In a real environment (North Cape) 15 dB-Hz was the lower limit for error-free reception. CCIR approved a recommendation in June, 1984 for a system operating through geostationary satellites at 1.6 GHz being a DRCS-type with very little modifications.Sponsors
International Foundation for TelemeteringISSN
0884-51230074-9079