• Login
    View Item 
    •   Home
    • Conference Proceedings
    • International Telemetering Conference
    • International Telemetering Conference Proceedings, Volume 32 (1996)
    • View Item
    •   Home
    • Conference Proceedings
    • International Telemetering Conference
    • International Telemetering Conference Proceedings, Volume 32 (1996)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Predicting Failures and Estimating Duration of Remaining Service Life from Satellite Telemetry

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    ITC_1996_96-24-3.pdf
    Size:
    318.7Kb
    Format:
    PDF
    Download
    Author
    Losik, Len
    Wahl, Sheila
    Owen, Lewis
    Affiliation
    Lockheed Martin Telemetry & Instrumentation
    Lockheed Martin Advanced Technology Center
    Issue Date
    1996-10
    Keywords
    Telemetry
    Analysis
    Anomaly Resolution
    Failure Prediction
    Anomaly Prediction
    Statistical Pattern Recognition
    
    Metadata
    Show full item record
    Rights
    Copyright © International Foundation for Telemetering
    Collection Information
    Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
    Publisher
    International Foundation for Telemetering
    Journal
    International Telemetering Conference Proceedings
    Abstract
    This paper addresses research completed for predicting hardware failures and estimating remaining service life for satellite components using a Failure Prediction Process (FPP). It is a joint paper, presenting initial research completed at the University of California, Berkeley, Center for Extreme Ultraviolet (EUV) Astrophysics using telemetry from the EUV EXPLORER (EUVE) satellite and statistical computation analysis completed by Lockheed Martin. This work was used in identifying suspect "failure precursors." Lockheed Martin completed an exploration into the application of statistical pattern recognition methods to identify FPP events observed visually by the human expert. Both visual and statistical methods were successful in detecting suspect failure precursors. An estimate for remaining service life for each unit was made from the time the suspect failure precursor was identified. It was compared with the actual time the equipment remained operable. The long-term objective of this research is to develop a resident software module which can provide information on FPP events automatically, economically, and with high reliability for long-term management of spacecraft, aircraft, and ground equipment. Based on the detection of a Failure Prediction Process event, an estimate of remaining service life for the unit can be calculated and used as a basis to manage the failure.
    Sponsors
    International Foundation for Telemetering
    ISSN
    0884-5123
    0074-9079
    Additional Links
    http://www.telemetry.org/
    Collections
    International Telemetering Conference Proceedings, Volume 32 (1996)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.