Show simple item record

dc.contributor.authorHordeski, Theodore J.,Jr.
dc.date.accessioned2016-06-01T18:13:48Z
dc.date.available2016-06-01T18:13:48Z
dc.date.issued1996-10
dc.identifier.issn0884-5123
dc.identifier.issn0074-9079
dc.identifier.urihttp://hdl.handle.net/10150/611475
dc.descriptionInternational Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, Californiaen_US
dc.description.abstractAerospace Report No. TOR-0059(6110-01)-3, section 1.3.3 outlines the design and performance requirements of SGLS (Space Ground Link Subsystem) uplink services equipment. This modulation system finds application in the U.S. Air Force satellite uplink commanding system. The SGLS signal generator is specified as an FSK (Frequency Shift Keyed)/AM (Amplitude Modulation)/PM (Phase Modulation) sub-carrier modulator. GDP Space Systems has implemented, on a single 6U-VME card, a SGLS signal generator. The modulator accepts data from several possible sources and uses the data to key one of three FSK tone frequencies. This ternary FSK signal is amplitude modulated by a synchronized triangle wave running at one half the data rate. The FSK/AM signal is then used to phase modulate a tunable HF (High-Frequency) sub-carrier. A digital design approach and the availability of integrated circuits with a high level of functionality enabled the realization of a SGLS signal generator on a single VME card. An analog implementation would have required up to three rack-mounted units to generate the same signal. The digital design improve performance, economy and reliability over analog approaches. This paper describes the advantages of a digital FSK/AM/PM modulation method, as well as DDS (Direct Digital Synthesis) and digital phase-lock techniques.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.subjectSGLSen
dc.subjectFSK/AM/PMen
dc.subjectTernary FSKen
dc.subjectDibit Command Dataen
dc.subjectAM Phase Delayen
dc.subjectDigital Phase-Lock Loopen
dc.subjectDirect Digital Synthesisen
dc.subjectNumerically-Controlled Oscillatoren
dc.titleDigital FSK/AM/PM Sub-Carrier Modulator on a 6U-VME-Carden_US
dc.typetexten
dc.typeProceedingsen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-09-11T11:28:41Z
html.description.abstractAerospace Report No. TOR-0059(6110-01)-3, section 1.3.3 outlines the design and performance requirements of SGLS (Space Ground Link Subsystem) uplink services equipment. This modulation system finds application in the U.S. Air Force satellite uplink commanding system. The SGLS signal generator is specified as an FSK (Frequency Shift Keyed)/AM (Amplitude Modulation)/PM (Phase Modulation) sub-carrier modulator. GDP Space Systems has implemented, on a single 6U-VME card, a SGLS signal generator. The modulator accepts data from several possible sources and uses the data to key one of three FSK tone frequencies. This ternary FSK signal is amplitude modulated by a synchronized triangle wave running at one half the data rate. The FSK/AM signal is then used to phase modulate a tunable HF (High-Frequency) sub-carrier. A digital design approach and the availability of integrated circuits with a high level of functionality enabled the realization of a SGLS signal generator on a single VME card. An analog implementation would have required up to three rack-mounted units to generate the same signal. The digital design improve performance, economy and reliability over analog approaches. This paper describes the advantages of a digital FSK/AM/PM modulation method, as well as DDS (Direct Digital Synthesis) and digital phase-lock techniques.


Files in this item

Thumbnail
Name:
ITC_1996_96-25-4.pdf
Size:
277.1Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record