Show simple item record

dc.contributor.authorSpielman, David R.
dc.date.accessioned2016-06-02T23:16:07Z
dc.date.available2016-06-02T23:16:07Z
dc.date.issued1994-10
dc.identifier.issn0884-5123
dc.identifier.issn0074-9079
dc.identifier.urihttp://hdl.handle.net/10150/611644
dc.descriptionInternational Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, Californiaen_US
dc.description.abstractA comprehensive examination of the market demands for cost reduced satellite telemetry & control stations will be presented. These systems are implemented using flexible, open architecture-based high performance real-time systems. The trend for combining telemetry monitoring of satellite data with closed-loop satellite command and control functions will be presented. This combined functionality opens up the possibilities for completely integrated, reduced cost satellite control systems. The market forces driving the demand for this integrated functionality include the broadening of non-military satellite applications, the widening international deployment of commercial satellites and the accompanying drive toward decentralized satellite control. The major requirements for the telemetry processing and command & control functionality of the integrated, reduced cost satellite control system will be presented. These requirements include: full real-time performance for processing telemetry data; flexible architecture for the incorporation of a wide range of I/O devices; capability of performing real-time, closed-loop control based on conditions in the telemetry data; user friendly development environments for application-specific customization of the system; and low system costs with the capability of indigenous support. The divergent requirements of performance, flexibility and price of these integrated, reduced cost satellite control systems is made possible via the use of open architecture building blocks that include standard VME boards combined with specialized real-time software drivers and user oriented, flexible Graphical User Interface (GUI) software.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.subjectOpen Architectureen
dc.subjectTelemetryen
dc.subjectCommand & Controlen
dc.subjectCCSDSen
dc.subjectReal-Timeen
dc.subjectSatelliteen
dc.titleThe Use of Open Architecture Systems in Cost Reduced Satellite Telemetry & Control Stationsen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentAP Labs, Inc.en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-08-14T08:30:25Z
html.description.abstractA comprehensive examination of the market demands for cost reduced satellite telemetry & control stations will be presented. These systems are implemented using flexible, open architecture-based high performance real-time systems. The trend for combining telemetry monitoring of satellite data with closed-loop satellite command and control functions will be presented. This combined functionality opens up the possibilities for completely integrated, reduced cost satellite control systems. The market forces driving the demand for this integrated functionality include the broadening of non-military satellite applications, the widening international deployment of commercial satellites and the accompanying drive toward decentralized satellite control. The major requirements for the telemetry processing and command & control functionality of the integrated, reduced cost satellite control system will be presented. These requirements include: full real-time performance for processing telemetry data; flexible architecture for the incorporation of a wide range of I/O devices; capability of performing real-time, closed-loop control based on conditions in the telemetry data; user friendly development environments for application-specific customization of the system; and low system costs with the capability of indigenous support. The divergent requirements of performance, flexibility and price of these integrated, reduced cost satellite control systems is made possible via the use of open architecture building blocks that include standard VME boards combined with specialized real-time software drivers and user oriented, flexible Graphical User Interface (GUI) software.


Files in this item

Thumbnail
Name:
ITC_1994_94-689.pdf
Size:
759.2Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record