Optimum Symbol Synchronization
dc.contributor.author | James, Calvin L. | |
dc.date.accessioned | 2016-06-02T23:25:10Z | |
dc.date.available | 2016-06-02T23:25:10Z | |
dc.date.issued | 1994-10 | |
dc.identifier.issn | 0884-5123 | |
dc.identifier.issn | 0074-9079 | |
dc.identifier.uri | http://hdl.handle.net/10150/611676 | |
dc.description | International Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, California | en_US |
dc.description.abstract | Although most closed-loop synchronizers employ maximum likelihood estimators for symbol value decisions, in general, their symbol timing estimates are not optimum. It would seem only natural that an optimum timing estimator would choose interval partitions based on maximizing the observed sample signal-to-noise ratio. The symbol synchronizer described below achieves optimum performance when decisions on present symbol values are based on current and previously-received symbol samples. This procedure attempts to reestablish the interval independence criterion, thereby reducing timing estimator variance. The realization presented is motivated by an open-loop maximum a posteriori (MAP) structure analysis. | |
dc.description.sponsorship | International Foundation for Telemetering | en |
dc.language.iso | en_US | en |
dc.publisher | International Foundation for Telemetering | en |
dc.relation.url | http://www.telemetry.org/ | en |
dc.rights | Copyright © International Foundation for Telemetering | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.title | Optimum Symbol Synchronization | en_US |
dc.type | text | en |
dc.type | Proceedings | en |
dc.contributor.department | AlliedSignal Technical Services Corporation | en |
dc.identifier.journal | International Telemetering Conference Proceedings | en |
dc.description.collectioninformation | Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection. | en |
refterms.dateFOA | 2018-06-27T15:52:06Z | |
html.description.abstract | Although most closed-loop synchronizers employ maximum likelihood estimators for symbol value decisions, in general, their symbol timing estimates are not optimum. It would seem only natural that an optimum timing estimator would choose interval partitions based on maximizing the observed sample signal-to-noise ratio. The symbol synchronizer described below achieves optimum performance when decisions on present symbol values are based on current and previously-received symbol samples. This procedure attempts to reestablish the interval independence criterion, thereby reducing timing estimator variance. The realization presented is motivated by an open-loop maximum a posteriori (MAP) structure analysis. |