Show simple item record

dc.contributor.authorMcFarr, Shawn
dc.contributor.authorFriedman, Paul
dc.date.accessioned2016-06-06T17:45:47Z
dc.date.available2016-06-06T17:45:47Z
dc.date.issued1993-10
dc.identifier.issn0884-5123
dc.identifier.issn0074-9079
dc.identifier.urihttp://hdl.handle.net/10150/611855
dc.descriptionInternational Telemetering Conference Proceedings / October 25-28, 1993 / Riviera Hotel and Convention Center, Las Vegas, Nevadaen_US
dc.description.abstractHigh-performance telemetry systems traditionally store prime and processed data on disk drives attached to a host computer. Bandwidth performance of host minicomputer and disk drives limit the amount of data archived to aggregate rates of a few hundred kilobytes per second. Over the years, several approaches have been used to increase performance from pre-recorded analog tape, but real-time storage still required a large host and expensive proprietary parallel disk technology. The advent of distributed architecture system networks divorced the front-end telemetry processor from direct 'DMA' connections to the host. Today's technology moves data storage to the front end for the highest performance and outward to the network for less demanding archival rates. This paper explores several schemes and implementations for increased digital data archival performance in a distributed architecture Telemetry Ground Station. It goes on to discuss the variety of industry-standard devices and media available for storage at tens of megabytes per second on Redundant Arrays of Inexpensive Disks (RAID) to slower but much less expensive optical and streaming tape drives on both the front end and network computing resources. But storage is half the task; networks serve many users requiring archived data access. The paper will also show how the sophistication of today's modern Graphical User Interface (GUI) eases data distribution for Telemetry Ground Station engineers and analysts.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.titleReal-Time Telemetry Data Archival and Distributionen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentLoral Instrumentationen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-09-11T11:53:17Z
html.description.abstractHigh-performance telemetry systems traditionally store prime and processed data on disk drives attached to a host computer. Bandwidth performance of host minicomputer and disk drives limit the amount of data archived to aggregate rates of a few hundred kilobytes per second. Over the years, several approaches have been used to increase performance from pre-recorded analog tape, but real-time storage still required a large host and expensive proprietary parallel disk technology. The advent of distributed architecture system networks divorced the front-end telemetry processor from direct 'DMA' connections to the host. Today's technology moves data storage to the front end for the highest performance and outward to the network for less demanding archival rates. This paper explores several schemes and implementations for increased digital data archival performance in a distributed architecture Telemetry Ground Station. It goes on to discuss the variety of industry-standard devices and media available for storage at tens of megabytes per second on Redundant Arrays of Inexpensive Disks (RAID) to slower but much less expensive optical and streaming tape drives on both the front end and network computing resources. But storage is half the task; networks serve many users requiring archived data access. The paper will also show how the sophistication of today's modern Graphical User Interface (GUI) eases data distribution for Telemetry Ground Station engineers and analysts.


Files in this item

Thumbnail
Name:
ITC_1993_93-610.pdf
Size:
297.9Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record