Show simple item record

dc.contributor.authorWard, Ronald P.
dc.date.accessioned2016-06-06T22:03:01Z
dc.date.available2016-06-06T22:03:01Z
dc.date.issued1992-10
dc.identifier.issn0884-5123
dc.identifier.issn0074-9079
dc.identifier.urihttp://hdl.handle.net/10150/611926
dc.descriptionInternational Telemetering Conference Proceedings / October 26-29, 1992 / Town and Country Hotel and Convention Center, San Diego, Californiaen_US
dc.description.abstractToday's complex implementations of integrated packet and circuit switched digital communications networks demand that the software used for controlling these systems be robust, fault tolerant, and capable of runtime recovery from all but the most severe of operational errors. The typical modern switched communications system includes the use of multiple circuit switches, each with potentially thousands of end-user interfaces. Further, these switches are often inter-connected to each other via high-capacity trunks. A single connection between two end-user interfaces often traverses a number of intermediate circuit switches in order to effect the end-to-end communications desired. In this complex, distributed environment, the establishment and dissolution of end-to-end user connections involve far more than simple binary connection states indicating the existence, or non-existence, of a link. More commonly, a single end-to-end connection requires multiple node links across multiple, heterogeneous interfaces. The command and control software used to establish, monitor, and dissolve these connections must be capable of dealing with errors which arise at any node along the way in a consistent and reliable manner. Most critically, the system software must be capable of maintaining an accurate, multi-level mapping of distributed resources' availability, allocation, and status. Further, the software must have the capability of "healing itself" during operational run-time when it can, and of accurately reporting the nature of inconsistencies caused by anomalous events that cannot be fixed on the fly. The Edwards Digital Switch (EDS), developed by CSTI, provides a case study of possible solutions, and potential pitfalls, that can arise in the design, development, and implementation of the controlling software in today's dynamic, distributed communications' system architectures.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.subjectCommunications Softwareen
dc.subjectConcurrency Controlen
dc.subjectCommercial Databasesen
dc.titleSoftware Considerations in the Control of Digital Communications Switching Systemsen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentCommunications Systems Technology, Incorporated (CSTI)en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-09-11T11:56:18Z
html.description.abstractToday's complex implementations of integrated packet and circuit switched digital communications networks demand that the software used for controlling these systems be robust, fault tolerant, and capable of runtime recovery from all but the most severe of operational errors. The typical modern switched communications system includes the use of multiple circuit switches, each with potentially thousands of end-user interfaces. Further, these switches are often inter-connected to each other via high-capacity trunks. A single connection between two end-user interfaces often traverses a number of intermediate circuit switches in order to effect the end-to-end communications desired. In this complex, distributed environment, the establishment and dissolution of end-to-end user connections involve far more than simple binary connection states indicating the existence, or non-existence, of a link. More commonly, a single end-to-end connection requires multiple node links across multiple, heterogeneous interfaces. The command and control software used to establish, monitor, and dissolve these connections must be capable of dealing with errors which arise at any node along the way in a consistent and reliable manner. Most critically, the system software must be capable of maintaining an accurate, multi-level mapping of distributed resources' availability, allocation, and status. Further, the software must have the capability of "healing itself" during operational run-time when it can, and of accurately reporting the nature of inconsistencies caused by anomalous events that cannot be fixed on the fly. The Edwards Digital Switch (EDS), developed by CSTI, provides a case study of possible solutions, and potential pitfalls, that can arise in the design, development, and implementation of the controlling software in today's dynamic, distributed communications' system architectures.


Files in this item

Thumbnail
Name:
ITC_1992_92-0538.pdf
Size:
195.8Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record