• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Antimicrobial Copper Iodide Materials

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14580_sip1_m.pdf
    Size:
    13.40Mb
    Format:
    PDF
    Download
    Author
    Krasnow, Nicholas Riordan
    Issue Date
    2016
    Keywords
    Materials Science & Engineering
    Advisor
    Uhlmann, Donald
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 25-May-2018
    Abstract
    Environmental microorganisms are implicated as the causative agents in a significant portion of healthcare associated infections (HAI) and antimicrobial resistant infections (AMR), which result in increased costs and suffering around the world. Furthermore, common environmental microorganisms participate in microbiological degradation of materials and the bio-fouling of various systems. This also results in a tremendous amount of damage in many different materials and many different sectors. The focus of this dissertation was the development of an additive that could be easily added to common materials to make them self-disinfecting and to protect them from microbial damage. The ultimate goal was to develop an additive that could be added using standard techniques and without adversely affecting the final material. Cuprous iodide (CuI) was determined to be an ideal starting material for the development of improved antimicrobial materials because of its neutral appearance and high antimicrobial activity as compared to other silver and copper materials. It was found that the antimicrobial efficacy of CuI could be amplified if prepared as a small particle and especially in the presence of vinylpyrrolidone polymers. A comminution process was then developed to produce these small particles. By using select copolymers, various CuI small particles formulation were developed to be compatible with a variety of different matrices. The efficacy of these CuI containing matrices was dependent on the compatibility of the CuI formulation with the matrix. A variety of applications were demonstrated with good antimicrobial efficacy where the particles were easily added to the finished material with minimal or no change in appearance.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Materials Science & Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.