• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Novel Electron Donors for Anaerobic Remediation of Acid Rock Drainage

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14642_sip1_m.pdf
    Size:
    2.851Mb
    Format:
    PDF
    Download
    Author
    Ayala-Parra, Pedro
    Issue Date
    2016
    Keywords
    Algae
    Anaerobic Digestion
    Bioremediation
    Electron Donor
    Heavy Metals
    Environmental Engineering
    Acid Rock Drainage
    Advisor
    Field, James A.
    Sierra-Alvarez, Maria R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 26-Nov-2016
    Abstract
    We initially studied the treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron as the electron donor. The results demonstrate that this electron donor can serve as the sole exogenous slow-release electron donor to drive sulfate reduction over 400 operational days at short HRTs (1-3 days). The synthetic acid rock drainage contained high heavy metal concentrations (up to 50 mg/L of copper) and pH values ranging from 3.0 to 7.0. Treatment of this acid rock drainage efficiently removed Cu, Cd and Pb (>99.7%) and increased pH to circumneutral values (7.3-7.7). Elemental analysis indicated that formation of insoluble metal sulfides was responsible for the effective metal removal in the zero valent iron columns. In the second study, three inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H₂SO₄ and Cu²⁺ during the experimental period of 4 months. Algae biomass promoted 80% of sulfate removal (12.7 mg SO₄²⁻ d-1), enabling near complete Cu removal (>99.5 %), and alkalinity generation, raising the effluent pH to 6.5. In the algae amended columns Cu²⁺ was precipitated with biogenic H2S produced by sulfate reduction. Whole cell algae and lipid extracted algae biomasses were both shown to be effective e-donors in driving sulfate reduction of ARD, thus enabling the precipitation and removal of Cu²⁺. The precipitate retained in the columns was composed mostly of insoluble copper sulfide formed from the biogenic sulfide, as shown by sequential extraction and X-ray diffraction. In the third study, several pretreatments, i.e., thermal, chemical, sonication and combinations thereof, that enhance anaerobic biodegradability of Chlorella protothecoides biomass were evaluated. The results demonstrate that anaerobic digestion of pretreated Chlorella protothecoides biomass generates energy-rich methane and recovers nitrogen nutrients. Sonication of algal biomass under optimized conditions provided a significant increase in the methane yield (327 mL STP CH₄ g⁻¹ VS) compared to untreated algae (146 mL STP CH₄ g⁻¹ VS), as demonstrated in anaerobic digestion experiments incubated for 41 days. In contrast, thermal pretreatment provided only a moderate increase of the methane yield and alkaline treatment led to a decrease of the methane yield compared to the untreated algal biomass. Additionally, sonication treatment provided a 4.1-fold increase in the release of ammonia nitrogen during anaerobic digestion of the algal biomass. In the fourth study, the nutrient recovery and biogas generation from the anaerobic digestion of waste biomass from algal biofuel production was investigated. Anaerobic digestion of whole cell and lipid extracted Chlorella sorokiniana-1412 released 48.1 and 61.5% of the total algal nitrogen as NH₄⁺-N, and 87.7 and 93.6% of the total algal P as soluble P, respectively. The biochemical methane potential, quantified through the methane yield of whole cell algae and lipid extracted algae, was 0.298 and 0.253 L methane/g algal volatile solids, respectively. The conversion of lipid extracted algae and whole cell algae biomasses to methane was very similar (38 and 41% on a COD basis, respectively), indicating that the energy yield was not significantly lowered by extraction of the lipid fraction (which accounted for 9% of algal dry weight). Sonication improved the access of hydrolytic enzymes to algal biopolymers, compensating in part for the energy lost due to lipid extraction. The above results demonstrate that algal waste from the biodiesel industry has the potential to be recycled through anaerobic digestion into valuable nutrients and energy. These studies indicate that zero valent iron and algae biomass are promising reactive materials for the treatment of acid rock drainage in sulfate-reducing permeable reactive barrier systems. Additionally, to promote algae cultivation for the biodiesel industry, the anaerobic digestion of algae residues can generate nutrients and energy, making algae cultivation more fiscally attractive.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Environmental Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.