• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Using Network Science to Estimate the Cost of Architectural Growth

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14464_sip1_m.pdf
    Size:
    20.23Mb
    Format:
    PDF
    Description:
    Dissertation not available in ...
    Download
    Author
    Dabkowski, Matthew Francis
    Issue Date
    2016
    Keywords
    community detection
    COSYSMO
    DoDAF
    network science
    preferential attachment
    Systems & Industrial Engineering
    blockmodeling
    Advisor
    Valerdi, Ricardo
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Dissertation not available (per author's request)
    Abstract
    Between 1997 and 2009, 47 major defense acquisition programs experienced cost overruns of at least 15% or 30% over their current or original baseline estimates, respectively (GAO, 2011, p. 1). Known formally as a Nunn-McCurdy breach (GAO, 2011, p. 1), the reasons for this excessive growth are myriad, although nearly 70% of the cases identified engineering and design issues as a contributing factor (GAO, 2011, p. 5). Accordingly, Congress legislatively acknowledged the need for change in 2009 with the passage of the Weapon Systems Acquisition Reform Act (WSARA, 2009), which mandated additional rigor and accountability in early life cycle (or Pre-Milestone A) cost estimation. Consistent with this effort, the Department of Defense has recently required more system specification earlier in the life cycle, notably the submission of detailed architectural models, and this has created opportunities for new approaches. In this dissertation, I describe my effort to transform one such model (or view), namely the SV-3, into computational knowledge that can be leveraged in Pre-Milestone A cost estimation and risk analysis. The principal contribution of my work is Algorithm 3-a novel, network science-based method for estimating the cost of unforeseen architectural growth in defense programs. Specifically, using number theory, network science, simulation, and statistical analysis, I simultaneously find the best fitting probability mass functions and strengths of preferential attachment for an incoming subsystem's interfaces, and I apply blockmodeling to find the SV-3's globally optimal macrostructure. Leveraging these inputs, I use Monte Carlo simulation and the Constructive Systems Engineering Cost Model to estimate the systems engineering effort required to connect a new subsystem to the existing architecture. This effort is chronicled by the five articles given in Appendices A through C, and it is summarized in Chapter 2.In addition to Algorithm 3, there are several important, tangential outcomes of this work, including: an explicit connection between Model Based System Engineering and parametric cost modeling, a general procedure for organizations to improve the measurement reliability of their early life cycle cost estimates, and several exact and heuristic methods for the blockmodeling of one-, two-, and mixed-mode networks. More generally, this research highlights the benefits of applying network science to systems engineering, and it reinforces the value of viewing architectural models as computational objects.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Systems & Industrial Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.