LOW-POWER FAULT-TOLERANT MICROPROCESSOR-BASED DISTRIBUTED ARCHITECTURE FOR ON-BOARD SIGNAL PROCESSING
Rights
Copyright © International Foundation for TelemeteringCollection Information
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.Abstract
Numerous future space-based systems are being conceived that will require the on-board processing of a volume of data many orders of magnitude greater than the current state-ofthe- art. Such systems must in addition be extremely low power and autonomously fault recoverable. This paper describes a microprocessor-based distributed architecture that has been evolving as a solution to this problem. This proposed architecture features three subarchitectures: synchronous pipeline, dedicated-channel microprocessor array, and multiplebus oriented microcomputer array; as well as internal data compression, distributed control and self testing, and a building block approach to system implementation. Emphasized is the roll of microprocessors in this architecture and the challenge of reducing the overhead required by fault-tolerant processing.Sponsors
International Foundation for TelemeteringISSN
0884-51230074-9079