• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Liquid-Phase Etching and Chemical Passivation of III-V Semiconductors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14508_sip1_m.pdf
    Size:
    7.939Mb
    Format:
    PDF
    Description:
    Dissertation not available in ...
    Download
    Author
    Mancheno Posso, Pablo Leonardo
    Issue Date
    2016
    Keywords
    Gallium arsenide
    Self assembled monolayer
    Semiconductor
    Chemical Engineering
    Diffusion
    Advisor
    Muscat, Anthony J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Dissertation not available (per author's request)
    Abstract
    The development of metal-oxide-semiconductor field effect transistor (MOSFET) technology relies on new channel materials with higher carrier mobilities that allow faster switching but at lower voltages. III-V semiconductors are suitable for channel materials in n-type MOSFETs due to their higher electron mobility. However, the interface between the gate dielectric and the III-V surface shows defects that detriment the electrical performance of the transistor. These defects are attributed to interfacial oxides that create energy states in the band gap. Therefore, III-V oxides must be removed and the surface must be protected from reoxidation for the deposition of other functional layers. In this work, oxide etching and passivation of III-V semiconductors were studied to understand the oxide etching mechanism and to develop passivation techniques that allow the integration of these materials in device manufacturing. The etching of GaAs(100) was studied using aqueous HCl and H₂O₂ mixtures with and without the addition of alpha-hydroxy acids. Oxide etching depends on the strength of the acid. Without the addition H₂O₂, acetic, glycolic, tartaric and hydrochloric acids (pKₐ lower than 5) are able to remove oxides. Upon the addition of H₂O₂, only the stronger acids (glycolic, tartaric and hydrochloric) with a pKₐ lower than 4 are able to compete with H₂O₂ and etch the oxides. Oxide removal leaves an As-rich surface, and in the case of HCl, etching leaves a surface terminated with As-Cl species. As-As dimers are formed when oxides are etched with HCl and organic acids. After oxide removal with HF or HCl, the fresh GaAs and InP surfaces were passivated with a series of alkanethiols (C(n)H(2n+1)SH) to assess their effectiveness in protecting the substrate from reoxidation. Longer C chains provided increased protectiong due to their increased chain-chain interactions that allow them to form a denser and well-ordered monolayer. The surface is chemically passivated through S-X (where X = As, Ga for GaAs, and In for InP) bonding between the alkanethiolate layer and the surface. A layer formed by 1-eicosanethiol protected GaAs for 30 min, but prevented reoxidation of InP for at least 5 hours. Since the thickness of the alkanethiol layer is the same, the difference in protection is a result of the density of the layer and S bonding with the substrate.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.