• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Statistical Approaches for Handling Missing Data in Cluster Randomized Trials

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14515_sip1_m.pdf
    Size:
    1.645Mb
    Format:
    PDF
    Download
    Author
    Fiero, Mallorie H.
    Issue Date
    2016
    Keywords
    Dropout
    Missing data
    Multiple imputation
    Pattern mixture model
    Sensitivity analysis
    Biostatistics
    Cluster randomized trials
    Advisor
    Bell, Melanie L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In cluster randomized trials (CRTs), groups of participants are randomized as opposed to individual participants. This design is often chosen to minimize treatment arm contamination or to enhance compliance among participants. In CRTs, we cannot assume independence among individuals within the same cluster because of their similarity, which leads to decreased statistical power compared to individually randomized trials. The intracluster correlation coefficient (ICC) is crucial in the design and analysis of CRTs, and measures the proportion of total variance due to clustering. Missing data is a common problem in CRTs and should be accommodated with appropriate statistical techniques because they can compromise the advantages created by randomization and are a potential source of bias. In three papers, I investigate statistical approaches for handling missing data in CRTs. In the first paper, I carry out a systematic review evaluating current practice of handling missing data in CRTs. The results show high rates of missing data in the majority of CRTs, yet handling of missing data remains suboptimal. Fourteen (16%) of the 86 reviewed trials reported carrying out a sensitivity analysis for missing data. Despite suggestions to weaken the missing data assumption from the primary analysis, only five of the trials weakened the assumption. None of the trials reported using missing not at random (MNAR) models. Due to the low proportion of CRTs reporting an appropriate sensitivity analysis for missing data, the second paper aims to facilitate performing a sensitivity analysis for missing data in CRTs by extending the pattern mixture approach for missing clustered data under the MNAR assumption. I implement multilevel multiple imputation (MI) in order to account for the hierarchical structure found in CRTs, and multiply imputed values by a sensitivity parameter, k, to examine parameters of interest under different missing data assumptions. The simulation results show that estimates of parameters of interest in CRTs can vary widely under different missing data assumptions. A high proportion of missing data can occur among CRTs because missing data can be found at the individual level as well as the cluster level. In the third paper, I use a simulation study to compare missing data strategies to handle missing cluster level covariates, including the linear mixed effects model, single imputation, single level MI ignoring clustering, MI incorporating clusters as fixed effects, and MI at the cluster level using aggregated data. The results show that when the ICC is small (ICC ≤ 0.1) and the proportion of missing data is low (≤ 25\%), the mixed model generates unbiased estimates of regression coefficients and ICC. When the ICC is higher (ICC > 0.1), MI at the cluster level using aggregated data performs well for missing cluster level covariates, though caution should be taken if the percentage of missing data is high.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Biostatistics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.