Show simple item record

dc.contributor.authorMartin, Warren L.
dc.date.accessioned2016-06-13T17:43:09Z
dc.date.available2016-06-13T17:43:09Z
dc.date.issued1983-10
dc.identifier.issn0884-5123
dc.identifier.issn0074-9079
dc.identifier.urihttp://hdl.handle.net/10150/612861
dc.descriptionInternational Telemetering Conference Proceedings / October 24-27, 1983 / Sheraton-Harbor Island Hotel and Convention Center, San Diego, Californiaen_US
dc.description.abstractAs space missions have become more expensive, the search for methods to improve efficiency has intensified. One approach offering great potential focuses upon multimission designs in order to avoid early obsolescence. Data handling systems are attractive candidates for the multimission concept because of the high cost of redesign and because the process should be amenable to a high degree of uniformity. By cooperating in the specification of their data systems, NASA and ESA should achieve significant uniformity. Apart from improving the design, this unified approach will facilitate the cross support of one agency’s spacecraft by the other agency’s tracking network. Here, we are concerned with the radio frequency subsystem which links spacecraft instruments with ground-based users. In large measure, the telecommunications system’s characteristics are determined by the ground station’s design. For the concept of cross support to succeed, there must be a substantial similarity between these NASA and ESA designs. Both NASA and ESA have large capital investments in their ground networks. While it might be theoretically satisfying to speak of a single ground system configuration for both agencies, the high cost of the required revisions renders this approach practically unachievable. This paper describes a process for maximizing the commonality of the two agencies’ radio frequency and modulation systems that is consistent with budgetary and scheduling constraints. The two-part program consists of identifying present system similarities and developing a plan for eliminating substantive differences where they are found to exist.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.titleTHE NASA DATA SYSTEMS STANDARDIZATION PROGRAM RADIO FREQUENCY AND MODULATIONen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentCALIFORNIA INSTITUTE OF TECHNOLOGY JET PROPULSION LABORATORYen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-04-26T00:03:01Z
html.description.abstractAs space missions have become more expensive, the search for methods to improve efficiency has intensified. One approach offering great potential focuses upon multimission designs in order to avoid early obsolescence. Data handling systems are attractive candidates for the multimission concept because of the high cost of redesign and because the process should be amenable to a high degree of uniformity. By cooperating in the specification of their data systems, NASA and ESA should achieve significant uniformity. Apart from improving the design, this unified approach will facilitate the cross support of one agency’s spacecraft by the other agency’s tracking network. Here, we are concerned with the radio frequency subsystem which links spacecraft instruments with ground-based users. In large measure, the telecommunications system’s characteristics are determined by the ground station’s design. For the concept of cross support to succeed, there must be a substantial similarity between these NASA and ESA designs. Both NASA and ESA have large capital investments in their ground networks. While it might be theoretically satisfying to speak of a single ground system configuration for both agencies, the high cost of the required revisions renders this approach practically unachievable. This paper describes a process for maximizing the commonality of the two agencies’ radio frequency and modulation systems that is consistent with budgetary and scheduling constraints. The two-part program consists of identifying present system similarities and developing a plan for eliminating substantive differences where they are found to exist.


Files in this item

Thumbnail
Name:
ITC_1983_83-27-5.pdf
Size:
28.67Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record