Publisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Escherichia coli is a diverse bacterium that inhabits the lower intestine of warm-blooded animals. While most strains are harmless, a handful are pathogenic and can cause food poisoning, intestinal damage, and other illness. Each year, 380,000 people die from E. coli-triggered diarrhea. To combat this, our design team has created a low-cost, optically-paired paper microfluidic sensor that detects E. coli presence and concentration in water samples. A paper microfluidic assay platform was chosen for its properties of being inexpensive, biodegradable, and nontoxic. The paper microfluidic strips are imbued with antibody-conjugated latex particles. These particles bond in the presence of E. coli, which will allow for optical detection using the change in intensity of light reflected from the surface of the chip. Our conceptual model has a sensor device where the user collects a water sample, dips a paper microfluidic strip into it, then inserts that strip into an optical detector that uses light scattering to quantify E. coli concentration. The sensor microcontroller and components is housed in a durable 3D-printed casing that optimally positions the optical setup and feeds results to a compact LCD display. This sensor is flexible for a range of microfluidic systems.Type
textElectronic Thesis
Degree Name
B.S.Degree Level
BachelorsDegree Program
Honors CollegeBiosystems Engineering