• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Parameter Advising for Multiple Sequence Alignment

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14549_sip1_m.pdf
    Size:
    4.310Mb
    Format:
    PDF
    Download
    Author
    DeBlasio, Daniel Frank
    Issue Date
    2016
    Keywords
    Computer Science
    Advisor
    Kececioglu, John
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The problem of aligning multiple protein sequences is essential to many biological analyses, but most standard formulations of the problem are NP-complete. Due to both the difficulty of the problem and its practical importance, there are many heuristic multiple sequence aligners that a researcher has at their disposal. A basic issue that frequently arises is that each of these alignment tools has a multitude of parameters that must be set, and which greatly affect the quality of the alignment produced. Most users rely on the default parameter setting that comes with the aligner, which is optimal on average, but can produce a low-quality alignment for the given inputs. This dissertation develops an approach called parameter advising to find a parameter setting that produces a high-quality alignment for each given input. A parameter advisor aligns the input sequences for each choice in a collection of parameter settings, and then selects the best alignment from the resulting alignments produced. A parameter advisor has two major components: (i) an advisor set of parameter choices that are given to the aligner, and (ii) an accuracy estimator that is used to rank alignments produced by the aligner. Alignment accuracy is measured with respect to a known reference alignment, in practice a reference alignment is not available, and we can only estimate accuracy. We develop a new accuracy estimator that we call called Facet (short for "feature-based accuracy estimator") that computes an accuracy estimate as a linear combination of efficiently-computable feature functions, whose coefficients are learned by solving a large scale linear programming problem. We also develop an efficient approximation algorithm for finding an advisor set of a given cardinality for a fixed estimator, whose cardinality should ideally small, as the aligner is invoked for each parameter choice in the set. Using Facet for parameter advising boosts advising accuracy by almost 20% beyond using a single default parameter choice for the hardest-to-align benchmarks. This dissertation further applies parameter advising in two ways: (i) to ensemble alignment, which uses the advising process on a collection of aligners to choose both the aligner and its parameter settings, and (ii) to adaptive local realignment, which can align different regions of the input sequences with distinct parameter choices to conform to mutation rates as they vary across the lengths of the sequences.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Computer Science
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.