Show simple item record

dc.contributor.authorFeather, Bob
dc.contributor.authorO’Brien, Michael
dc.date.accessioned2016-06-13T19:51:12Z
dc.date.available2016-06-13T19:51:12Z
dc.date.issued1991-11
dc.identifier.issn0884-5123
dc.identifier.issn0074-9079
dc.identifier.urihttp://hdl.handle.net/10150/612934
dc.descriptionInternational Telemetering Conference Proceedings / November 04-07, 1991 / Riviera Hotel and Convention Center, Las Vegas, Nevadaen_US
dc.description.abstractThere have been many recent technological advances in small computers, graphics stations, and system networks. This has made it possible to build highly advanced distributed processing systems for telemetry data acquisition and processing. Presently there is a plethora of vendors marketing powerful new network workstation hardware and software products. Computer vendors are rapidly developing new products as new technology continues to emerge. It is becoming difficult to procure and install a new computer system before it has been made obsolete by a competitor or even the same vendor. If one purchases the best hardware and software products individually, the system can end up being composed of incompatible components from different vendors that do not operate as one integrated homogeneous system. If one uses only hardware and software from one vendor in order to simplify system integration, the system will be limited to only those products that the vendor chooses to develop. To truly take advantage of the rapidly advancing computer technology, today’s telemetry systems should be designed for an open systems environment. This paper defines an optimum open architecture system designed around industry wide standards for both hardware and software. This will allow for different vendor’s computers to operate in the same distributed networked system, and will allow software to be portable to the various computers and workstations in the system while maintaining the same user interface. The open architecture system allows for new products to be added as they become available to increase system performance and capability in a truly heterogeneous system environment.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.titleOPEN ARCHITECTURE SYSTEM FOR REAL TIME TELEMETRY DATA PROCESSINGen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentLoral Data Systems, Inc.en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-06-14T00:06:12Z
html.description.abstractThere have been many recent technological advances in small computers, graphics stations, and system networks. This has made it possible to build highly advanced distributed processing systems for telemetry data acquisition and processing. Presently there is a plethora of vendors marketing powerful new network workstation hardware and software products. Computer vendors are rapidly developing new products as new technology continues to emerge. It is becoming difficult to procure and install a new computer system before it has been made obsolete by a competitor or even the same vendor. If one purchases the best hardware and software products individually, the system can end up being composed of incompatible components from different vendors that do not operate as one integrated homogeneous system. If one uses only hardware and software from one vendor in order to simplify system integration, the system will be limited to only those products that the vendor chooses to develop. To truly take advantage of the rapidly advancing computer technology, today’s telemetry systems should be designed for an open systems environment. This paper defines an optimum open architecture system designed around industry wide standards for both hardware and software. This will allow for different vendor’s computers to operate in the same distributed networked system, and will allow software to be portable to the various computers and workstations in the system while maintaining the same user interface. The open architecture system allows for new products to be added as they become available to increase system performance and capability in a truly heterogeneous system environment.


Files in this item

Thumbnail
Name:
ITC_1991_91-792.pdf
Size:
344.4Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record