We are upgrading the repository! A content freeze is in effect until November 22nd, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.advisorPagel, Mark D.en
dc.contributor.authorSinharay, Sanhita
dc.creatorSinharay, Sanhitaen
dc.date.accessioned2016-06-13T20:29:52Z
dc.date.available2016-06-13T20:29:52Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/10150/612945
dc.description.abstractThe in vivo detection of enzyme activity is a significant biomarker in tumorigenesis. Assessment of enzyme activity relative to enzyme concentration can serve as quite an accurate measurement of several disease states. Chemical Exchange Saturation Transfer (CEST) MRI is a non-invasive imaging technique that can be used to evaluate enzyme activity. Compared to other contrast agents CEST MRI agents have a slower chemical exchange rate and thus have greater specificity for detecting the intended biomarker. Chapter 1 provides an overview of the advances made in the field of molecular imaging for detection of cancer biomarkers. The molecular mechanism of each technique is explained with specific examples and advantages as well as disadvantages of each technique. Chapter 2 investigates the specific example of detection of an enzyme, γ-glutamyl transferase (GGT) in ovarian cancer tumor models using a catalyCEST MRI contrast agent. This chapter discusses the step-by step evaluation of the non-metallic contrast agent, from synthesis to evaluation of its catalytic efficiency with Michaelis Menten kinetics studies and finally in vivo GGT detection in ovarian tumor models of OVCAR-8 and OVCAR-3. Chapter 3 investigates the enzyme, Kallikrein-6 and its detection in HCT116 colon cancer tumor model. In addition to enzyme detection, enzyme inhibition using Antithrombin III inhibitor has also been explored within in vitro media and in vivo HCT116 tumor model. Chapter 4 introduces the catalyCEST agent for detection of sulfatase enzyme. This chapter discusses the synthesis of this agent and its ability to detect sulfatase in bacterial cell suspension and mammalian cell suspension. These examples portray catalyCEST MRI as a platform technology for enzyme activity detection. Finally in Chapter 5 future ideas have been proposed to improve the in vivo detection and broaden the applications of catalyCEST MRI in the field of enzyme studies.
dc.language.isoen_USen
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.subjectEnzymesen
dc.subjectMolecular Imagingen
dc.subjectChemistryen
dc.subjectCEST MRIen
dc.titleDevelopment and Application of CatalyCEST MRI Contrast Agents for the Study of Enzyme Activities in Tumor Modelsen_US
dc.typetexten
dc.typeElectronic Dissertationen
thesis.degree.grantorUniversity of Arizonaen
thesis.degree.leveldoctoralen
dc.contributor.committeememberKuo, Philip H.en
dc.contributor.committeememberGlass, Richard S.en
dc.contributor.committeememberMash, Eugene A.en
dc.contributor.committeememberPagel, Mark D.en
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineChemistryen
thesis.degree.namePh.D.en
refterms.dateFOA2018-07-02T10:56:12Z
html.description.abstractThe in vivo detection of enzyme activity is a significant biomarker in tumorigenesis. Assessment of enzyme activity relative to enzyme concentration can serve as quite an accurate measurement of several disease states. Chemical Exchange Saturation Transfer (CEST) MRI is a non-invasive imaging technique that can be used to evaluate enzyme activity. Compared to other contrast agents CEST MRI agents have a slower chemical exchange rate and thus have greater specificity for detecting the intended biomarker. Chapter 1 provides an overview of the advances made in the field of molecular imaging for detection of cancer biomarkers. The molecular mechanism of each technique is explained with specific examples and advantages as well as disadvantages of each technique. Chapter 2 investigates the specific example of detection of an enzyme, γ-glutamyl transferase (GGT) in ovarian cancer tumor models using a catalyCEST MRI contrast agent. This chapter discusses the step-by step evaluation of the non-metallic contrast agent, from synthesis to evaluation of its catalytic efficiency with Michaelis Menten kinetics studies and finally in vivo GGT detection in ovarian tumor models of OVCAR-8 and OVCAR-3. Chapter 3 investigates the enzyme, Kallikrein-6 and its detection in HCT116 colon cancer tumor model. In addition to enzyme detection, enzyme inhibition using Antithrombin III inhibitor has also been explored within in vitro media and in vivo HCT116 tumor model. Chapter 4 introduces the catalyCEST agent for detection of sulfatase enzyme. This chapter discusses the synthesis of this agent and its ability to detect sulfatase in bacterial cell suspension and mammalian cell suspension. These examples portray catalyCEST MRI as a platform technology for enzyme activity detection. Finally in Chapter 5 future ideas have been proposed to improve the in vivo detection and broaden the applications of catalyCEST MRI in the field of enzyme studies.


Files in this item

Thumbnail
Name:
azu_etd_14543_sip1_m.pdf
Size:
8.276Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record