• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A New High-Resolution Electromagnetic Method for Subsurface Imaging

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14552_sip1_m.pdf
    Size:
    6.796Mb
    Format:
    PDF
    Download
    Author
    Feng, Wanjie
    Issue Date
    2016
    Keywords
    Electromagnetic method
    High-resolution
    Subsurface imaging
    Mining Geological & Geophysical Engineering
    DTAC method
    Advisor
    Sternberg, Ben K.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    For most electromagnetic (EM) geophysical systems, the contamination of primary fields on secondary fields ultimately limits the capability of the controlled-source EM methods. Null coupling techniques were proposed to solve this problem. However, the small orientation errors in the null coupling systems greatly restrict the applications of these systems. Another problem encountered by most EM systems is the surface interference and geologic noise, which sometimes make the geophysical survey impossible to carry out. In order to solve these problems, the alternating target antenna coupling (ATAC) method was introduced, which greatly removed the influence of the primary field and reduced the surface interference. But this system has limitations on the maximum transmitter moment that can be used. The differential target antenna coupling (DTAC) method was proposed to allow much larger transmitter moments and at the same time maintain the advantages of the ATAC method. In this dissertation, first, the theoretical DTAC calculations were derived mathematically using Born and Wolf's complex magnetic vector. 1D layered and 2D blocked earth models were used to demonstrate that the DTAC method has no responses for 1D and 2D structures. Analytical studies of the plate model influenced by conductive and resistive backgrounds were presented to explain the physical phenomenology behind the DTAC method, which is the magnetic fields of the subsurface targets are required to be frequency dependent. Then, the advantages of the DTAC method, e.g., high-resolution, reducing the geologic noise and insensitive to surface interference, were analyzed using surface and subsurface numerical examples in the EMGIMA software. Next, the theoretical advantages, such as high resolution and insensitive to surface interference, were verified by designing and developing a low-power (moment of 50 Am²) vertical-array DTAC system and testing it on controlled targets and scaled target coils. At last, a high-power (moment of about 6800 Am²) vertical-array DTAC system was designed, developed and tested on controlled buried targets and surface interference to illustrate that the DTAC system was insensitive to surface interference even with a high-power transmitter and having higher resolution by using the large-moment transmitter. From the theoretical and practical analysis and tests, several characteristics of the DTAC method were found: (1) The DTAC method can null out the effect of 1D layered and 2D structures, because magnetic fields are orientation independent which lead to no difference among the null vector directions. This characteristic allows for the measurements of smaller subsurface targets; (2) The DTAC method is insensitive to the orientation errors. It is a robust EM null coupling method. Even large orientation errors do not affect the measured target responses, when a reference frequency and one or more data frequencies are used; (3) The vertical-array DTAC method is effective in reducing the geologic noise and insensitive to the surface interference, e.g., fences, vehicles, power line and buildings; (4) The DTAC method is a high-resolution EM sounding method. It can distinguish the depth and orientation of subsurface targets; (5) The vertical-array DTAC method can be adapted to a variety of rapidly moving survey applications. The transmitter moment can be scaled for effective study of near-surface targets (civil engineering, water resource, and environmental restoration) as well as deep targets (mining and other natural-resource exploration).
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Mining Geological & Geophysical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.