Show simple item record

dc.contributor.authorPolicella, Joseph
dc.date.accessioned2016-06-15T00:35:18Z
dc.date.available2016-06-15T00:35:18Z
dc.date.issued1991-11
dc.identifier.issn0884-5123
dc.identifier.issn0074-9079
dc.identifier.urihttp://hdl.handle.net/10150/613182
dc.descriptionInternational Telemetering Conference Proceedings / November 04-07, 1991 / Riviera Hotel and Convention Center, Las Vegas, Nevadaen_US
dc.description.abstractIn a generic telemetry simulation the overall fidelity of the simulation is largely based on the simulated vehicle’s On-Board-Systems (OBS) engineering models that drive the generation of the telemetry. Also, the actual transfer of data between the simulated vehicle and control center depends on the ability of the Radio Frequency (RF) OBS to acquire and process the RF links thus resulting in a Acquisition of Signal or Loss of Signal (AOS/LOS) determination. The simulated RF links are a function of the communications OBS models, and the communications environment models. The communications OBS models are responsible for propagating the RF signal. Since the RF link analysis is highly integrated into the characteristics of the communications equipment and environment models, RF link software needs to be constantly redeveloped as communications equipment models change, fidelity is added, or multiple links are created. However, by using a generic objectoriented design, RF link software can process any number of differing links based on the RF characteristics of the propagated wave. As a result, the communications equipment model software can be changed to reflect possible design changes without having to rewrite the RF link software thus allowing reuse of existing code.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.titleA GENERIC OBJECT-ORIENTED DESIGN FOR A RADIO FREQUENCY SIMULATION IN A SPACE TELEMETRY AND COMMAND ENVIRONMENTen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentCAE-Link Corporationen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-06-14T15:41:02Z
html.description.abstractIn a generic telemetry simulation the overall fidelity of the simulation is largely based on the simulated vehicle’s On-Board-Systems (OBS) engineering models that drive the generation of the telemetry. Also, the actual transfer of data between the simulated vehicle and control center depends on the ability of the Radio Frequency (RF) OBS to acquire and process the RF links thus resulting in a Acquisition of Signal or Loss of Signal (AOS/LOS) determination. The simulated RF links are a function of the communications OBS models, and the communications environment models. The communications OBS models are responsible for propagating the RF signal. Since the RF link analysis is highly integrated into the characteristics of the communications equipment and environment models, RF link software needs to be constantly redeveloped as communications equipment models change, fidelity is added, or multiple links are created. However, by using a generic objectoriented design, RF link software can process any number of differing links based on the RF characteristics of the propagated wave. As a result, the communications equipment model software can be changed to reflect possible design changes without having to rewrite the RF link software thus allowing reuse of existing code.


Files in this item

Thumbnail
Name:
ITC_1991_91-853.pdf
Size:
291.3Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record