• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Combination Therapeutic Strategies Targeting Growth and Metabolic Pathways in Prostate Cancer

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14592_sip1_m.pdf
    Size:
    3.522Mb
    Format:
    PDF
    Download
    Author
    Canatsey, Ryan Douglas
    Issue Date
    2016
    Keywords
    diagnostics
    immunohistochemistry
    pentoxifylline
    prostate cancer
    signaling
    Pharmacology & Toxicology
    combination therapies
    Advisor
    Lau, Serrine S.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Despite recent advances, prognosis in metastatic prostate cancer remains poor. As with other cancers, tumor heterogeneity is an increasingly evident contributor in prostate tumorigenesis and developed resistance. Using in vitro and in vivo model systems, we examined novel diagnostic and therapeutic strategies in prostate cancer. In these studies, combination treatment with amuvatinib, a receptor tyrosine kinase inhibitor, and erlotinib, an epidermal growth factor inhibitor, was assessed for its ability to differentially modulate growth signaling in pathway diverse LNCaP (PTEN⁻) and DU-145 (PTEN⁺) human prostate cancer cell and mouse xenograft models. Our results suggest both individual mechanistic signaling activities, as well as benefits of the combination therapy though modulations of MAPK (pERK) and 4EBP1/cyclin D1 in growth signaling divergent PTEN+ and PTEN- prostate cancer cells. Additionally, despite the importance preanalytical tissue preservation on downstream diagnostic assays, exact protocols are not well defined and highly variable clinically and, as such, critical diagnostic information is lost. We show that a novel 2+2 fixation method induces target- and cell-specific alterations in immunostain intensity and efficacy. Importantly, cyclin D1 is increasingly utilized for as a clinical prognostic/diagnostic marker and demonstrated improved immunohistochemical staining efficacy with 2+2 fixation compared with treatment-matched xenograft protein alterations as assessed by western analysis. Finally, pentoxifylline (PTX) is a clinically utilized and well tolerated PDE inhibitor that has shown promise as a radio-/chemo-sensitization and anti-cancer agent against a variety of cancers. In these studies, we demonstrate that PTX induces cell and tumor growth inhibition in LNCaP prostate cancer cells. Mechanistically, PTX induces transient cellular signaling modulations of both the AMPK metabolic and AKT/mTOR growth pathways, while inducing autophagy. Also, PTX sensitizes LNCaP prostate cancer to cytotoxicity induced by first line chemotherapy docetaxel, inducing significant cellular apoptosis and reducing effective docetaxel concentrations by >10 fold for equivalent toxicity in viability assays. These findings nominate PTX as an adjunct therapy for the treatment of prostate cancer. In summary, these studies characterize the targeted signaling modulation by combination erlotinib and amuvatinib therapy, as well as pentoxifylline, for their use as therapies for prostate cancer. A novel fixation protocol was also assessed for improved diagnostic tissue preservation of critical signaling proteins. Further understanding in these areas will aid and expand the development of effective diagnostics, as well as emphasize the benefits of these and similar therapeutics for the treatment of prostate cancer.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Pharmacology & Toxicology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.