• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Honors Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Honors Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    INDUSTRIAL SCALE PRODUCTION OF SELF-HEALING CONCRETE

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_mr_2016_0134_sip1_m.pdf
    Size:
    7.871Mb
    Format:
    PDF
    Download
    Author
    Lopez, Paola Andrea
    Reynolds, Katherine
    Sedgwick, Sarina
    Wilkening, Jean
    Issue Date
    2016
    Advisor
    Ogden, Kimberly
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    When exposed to varying temperatures, water, and stress, concrete develops tiny undetectable cracks that can spread and threaten its integrity until eventually it must be replaced. Self-healing concrete offers significant economic and environmental benefits. The goal of this project is to investigate the feasibility of using bacteria as a self-healing additive, and to design a plant for producing self-healing concrete. The concrete designed by the team includes dormant bacteria that are reactivated by water entering a crack. The bacteria naturally produce calcium carbonate, which seals the cracks resulting in a stronger, longer-lasting concrete. The team designed a system of bioreactors to cultivate the bacteria, Bacillus subtilis, which is added to lightweight aggregate, a component of concrete. The team also designed a plant to produce the cement necessary to make concrete. This design involves balancing the energy needs of several large crushers and grinders, a heating and cooling system, and a large kiln. The cement and aggregate are combined with water to form self-healing concrete.
    Type
    text
    Electronic Thesis
    Degree Name
    B.S.
    Degree Level
    Bachelors
    Degree Program
    Honors College
    Chemical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Honors Theses
    Honors Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.