• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Translational Predictive Model for Heart Failure Recovery in LVAD Patients Receiving Stem Cell Therapy

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14665_sip1_m.pdf
    Size:
    2.068Mb
    Format:
    PDF
    Download
    Author
    Mikail, Philemon
    Issue Date
    2016
    Keywords
    heart failure
    mechanical circulatory support
    mesenchymal stem cells
    micronized liquid matrix
    pulsatility
    Biomedical Engineering
    amniotic allograft
    Advisor
    Khalpey, Zain I.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Introduction: Heart failure remains a major public health problem, with recent estimates indicating that end-stage heart failure with two-year mortality rates of 70-80% affects over 60,000 patients in the US each year. Medical management can be used but success declines for patients with end stage heart failure. Although cardiac transplantation is optimal, less than 2500 cardiac transplants are performed annually due to the severely limited supply of donor organs. Mechanical circulatory support (MCS) devices are now routinely used to bridge patients with end-stage heart failure who become critically ill until a donor heart is available. The use of stem cell therapy to treat heart failure has been gaining significant ground in recent years, specifically due to its regenerative properties, and both animal and human models have shown significant improvements in ventricular mass, ejection fraction, vascularization, wall thickness, and infarct size reduction. Using the patients' HeartWare HVAD device diagnostics, we were able to acquire our response variable; pulsatility. Pulsatility is a variable measure of the differential between minimum and maximum flow and is dependent on device motor speed, power, current, and fluid viscosity. This measurement is important as it relates to the contractility of the heart and could potentially be used as an end point in determining when a patient is healthy enough to have their HVAD explanted. We set out to develop a low cost and effective predictive model to determine amniotic mesenchymal stem cell's ability to repair compromised cardiac tissue of patients using the Total Artificial Heart (TAH) and Donovan Mock Circulation Tank (DMC). Methods: Predictive modelling was performed using the TAH and DMC. The system was set to a range from critical heart failure to a normal operating conditions through the variation of preload, afterload, and ventricular drive pressures with the intent of comparing the results to our patient population. Patients (n=7, 3 dilated, 4 ischemic) received intravenous and intra-myocardial injections of a heterogeneous amniotic mesenchymal stem cells mixture and liquid matrix (MSCs+LM) at HVAD implant. Groups were analyzed based on treatment; control (HVAD only, n=7) versus stem cells (HVAD + MSCs+LM). HeartWare log files were acquired from patients' devices and analyzed in SAS and Matlab. Results from the patient study were compared to the predictive model to determine levels of stem cell response. Results: Pulsatility was found to increase with left drive pressure and afterload. Lower drive pressures resulted in a drop off in pulsatility at higher afterloads while higher drive pressures were able to compensate for any afterload. Pulsatility also increased with preload but lower drive pressures were unable to fully eject at the highest preloads, resulting in a reduced pulsatility. We observed the effects of the stem cell injections on pulsatility and found that patients receiving therapy demonstrated statistically significant increases in pulsatility at 15-20 (p=.0487), 25-30 (p=.0131), 35-40 (p=.0333), and 75-80 (p=0.0476) days post implant. At minimum, when comparing the patient results to the in vitro model, the therapy resulted in a progression from end stage HF conditions to medium cardiac function conditions. At maximum, the therapy resulted in a progression from end stage HF to normal healthy operating cardiac function. Conclusions: Stem cells demonstrated a significantly increased rate of change in pulsatility within the first 40 days and at 80 days post implant when compared to control. They also demonstrated progression from end stage HF to normal healthy cardiac function at two time periods (Days 40, 90). These results justify expansion of the study to encompass a larger patient population to verify the results of the in vitro model to predict cardiac regeneration with multiple functional status indicators.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.