• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Time-Dependent Rock Failure at Kartchner Caverns, Arizona

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14682_sip1_m.pdf
    Size:
    17.01Mb
    Format:
    PDF
    Download
    Thumbnail
    Name:
    heterogeneous_k0pt5.mp4
    Size:
    2.912Mb
    Format:
    Unknown
    Download
    Thumbnail
    Name:
    homogeneous_k0pt5.mp4
    Size:
    2.787Mb
    Format:
    Unknown
    Download
    Thumbnail
    Name:
    homogeneous_k1.mp4
    Size:
    2.930Mb
    Format:
    Unknown
    Download
    Thumbnail
    Name:
    homogeneous_k1_low-stress.mp4
    Size:
    3.669Mb
    Format:
    Unknown
    Download
    View more filesView fewer files
    Author
    Roth, Karen
    Issue Date
    2016
    Keywords
    fracture mechanics
    karst
    rockfall
    rock mechanics
    subcritical crack growth
    Mining Geological & Geophysical Engineering
    finite element analysis
    Advisor
    Kemeny, John
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Assessing long-term rock stability is an important aspect in the analysis of slopes, dam and bridge foundations, and other infrastructure. Rock behavior over tens to thousands of years must be anticipated when predicting the performance of, for example, an underground containment facility for nuclear waste. At such long time scales, the time dependence of rock failure, typically ignored in short time scale analyses, has a significant effect and must be included in the analysis. Since time-dependent rock behavior is thought to be caused by the subcritical growth of microcracks, a time-dependent analysis should incorporate a method of simulating subcritical crack growth. In this thesis, a rock bridge damage model was developed using the finite element program Abaqus to simulate subcritical crack growth for all three modes of crack tip displacement in three-dimensional rock masses. Since subcritical crack growth is not among the damage initiation and evolution criteria available in Abaqus, its effect was included in the model through the USDFLD user subroutine. Material properties for the damage model were obtained through laboratory fracture toughness testing of Escabrosa limestone from Kartchner Caverns. Tests included the grooved disk test for mode I, the punch-through shear with confining pressure test for mode II, and the circumferentially-notched cylindrical specimen test for mode III. The subcritical crack growth parameters n and A were calculated for all three modes using the constant stress-rate method. Fracture test results were compared with a previous study by Tae Young Ko at the University of Arizona, which tested Coconino sandstone and determined that the subcritical crack growth parameters were consistent among modes. This thesis expands upon Ko's work by adding the characterization of a second rock material in all three modes; results indicate that for Escabrosa limestone the subcritical crack growth parameters are not consistent among modes. Additionally, the Escabrosa limestone composing the caverns ranges from a more homogeneous, even-grained texture to a more heterogeneous texture consisting of coarse-grained veins and solution cavities set in a fine-grained matrix. To determine if the veined regions are more susceptible to fracturing and act as the nuclei of rock bridge failure, the fracture toughness tests were conducted separately for each texture. Results indicate that the more heterogeneous limestone has a higher fracture strength, fracture toughness, and subcritical crack growth index n than the more homogeneous limestone. This is in agreement with previous studies that determined that a more complex and heterogeneous microstructure produces a larger microcrack process zone and a more tortuous crack path, leading to higher fracture energies and larger values of n. Application of the rock bridge damage model to a simplified Kartchner cave room with a single roof block provided visualization of decreasing rock bridge size and produced time-to-failure estimates of 1,251 to 65,850 years. Multiple models were run to study the effect of (i) using material properties from each of the two textures identified in the Escabrosa limestone and (ii) varying the in-situ stress ratio, K. Both the value of K and the choice of Escabrosa texture had a large effect on the estimated time-to-failure, indicating that for future modeling of Kartchner accurate estimation of the in-situ stress ratio is as important as field identification of homogeneous vs. heterogeneous textures.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Mining Geological & Geophysical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.