• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Generation of Individualized Treatment Decision Tree Algorithm with Application to Randomized Control Trials and Electronic Medical Record Data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14716_sip1_m.pdf
    Size:
    782.7Kb
    Format:
    PDF
    Download
    Author
    Doubleday, Kevin
    Issue Date
    2016
    Keywords
    Random Forest
    Recursive Partitioning
    Subgroup Identification
    Value Function
    Variable Importance
    Biostatistics
    Personalized Medicine
    Advisor
    Zhou, Jin
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    With new treatments and novel technology available, personalized medicine has become a key topic in the new era of healthcare. Traditional statistical methods for personalized medicine and subgroup identification primarily focus on single treatment or two arm randomized control trials (RCTs). With restricted inclusion and exclusion criteria, data from RCTs may not reflect real world treatment effectiveness. However, electronic medical records (EMR) offers an alternative venue. In this paper, we propose a general framework to identify individualized treatment rule (ITR), which connects the subgroup identification methods and ITR. It is applicable to both RCT and EMR data. Given the large scale of EMR datasets, we develop a recursive partitioning algorithm to solve the problem (ITR-Tree). A variable importance measure is also developed for personalized medicine using random forest. We demonstrate our method through simulations, and apply ITR-Tree to datasets from diabetes studies using both RCT and EMR data. Software package is available at https://github.com/jinjinzhou/ITR.Tree.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Biostatistics
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.