Show simple item record

dc.contributor.authorKoelle, D. E.
dc.contributor.authorKleinau, W.
dc.date.accessioned2016-06-21T21:30:53Z
dc.date.available2016-06-21T21:30:53Z
dc.date.issued1981-10
dc.identifier.issn0884-5123
dc.identifier.issn0074-9079
dc.identifier.urihttp://hdl.handle.net/10150/614000
dc.descriptionInternational Telemetering Conference Proceedings / October 13-15, 1981 / Bahia Hotel, San Diego, Californiaen_US
dc.description.abstractThe paper describes a new GEO platform design with the special features of modularity and integrated transfer propulsion. It is a candidate for the 3000 kg-class of communication satellites required for the next decade INTELSAT VII and multi-nation (TVBS). The technical results of a study performed for the German Ministry of Research and Technology (BMFT) are presented regarding the GEO platform and its performance in terms of communication payload and mission lifetime. The reference system design has a total launch mass of 14.3 Mg (metric tons) in LEO including 10.9 Mg transfer propellants mass. The initial mass in CEO is 3.4 Mg allowing for 400 to 700 kg communication equipment, depending on power level, eclipse capability requirements (batteries) and mission lifetime. The launch vehicle for this platform is the Space Shuttle, the associated launch cost would be only 20 Mio. Dollars (1980), without additional cost for any type of perigee or transfer stage. The platform propels itself from LEO (300 km) to the geosynchronous orbit with a 6 impulse transfer, provided by a 5 kN engine (1100 lbs thrust level). This launch mode - although not being the optimum from the performance standpoint - proves to be the most economic one, compared to other alternatives, by example Shuttle + Centaur, with some 52 Mio. Dollars (80) total launch cost.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.titleA MODULAR TELECOMMUNICATION GEOPLATFORM CONCEPTen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentMBB Space Divisionen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-08-20T13:19:09Z
html.description.abstractThe paper describes a new GEO platform design with the special features of modularity and integrated transfer propulsion. It is a candidate for the 3000 kg-class of communication satellites required for the next decade INTELSAT VII and multi-nation (TVBS). The technical results of a study performed for the German Ministry of Research and Technology (BMFT) are presented regarding the GEO platform and its performance in terms of communication payload and mission lifetime. The reference system design has a total launch mass of 14.3 Mg (metric tons) in LEO including 10.9 Mg transfer propellants mass. The initial mass in CEO is 3.4 Mg allowing for 400 to 700 kg communication equipment, depending on power level, eclipse capability requirements (batteries) and mission lifetime. The launch vehicle for this platform is the Space Shuttle, the associated launch cost would be only 20 Mio. Dollars (1980), without additional cost for any type of perigee or transfer stage. The platform propels itself from LEO (300 km) to the geosynchronous orbit with a 6 impulse transfer, provided by a 5 kN engine (1100 lbs thrust level). This launch mode - although not being the optimum from the performance standpoint - proves to be the most economic one, compared to other alternatives, by example Shuttle + Centaur, with some 52 Mio. Dollars (80) total launch cost.


Files in this item

Thumbnail
Name:
ITC_1981_81-15-4.pdf
Size:
48.41Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record