Improving the Reliability of Compartmental Models: Case of Conceptual Hydrologic Rainfall-Runoff Models
Affiliation
Department of Hydrology & Water Resources, The University of ArizonaIssue Date
1986-08Keywords
Runoff -- Mathematical models.Rain and rainfall -- Mathematical models.
Groundwater -- Mathematical models.
Soil moisture -- Mathematical models.
Soil moisture -- Measurement -- Mathematical models.
Metadata
Show full item recordRights
Copyright © Arizona Board of RegentsCollection Information
This title from the Hydrology & Water Resources Technical Reports collection is made available by the Department of Hydrology & Atmospheric Sciences and the University Libraries, University of Arizona. If you have questions about titles in this collection, please contact repository@u.library.arizona.edu.Series/Report no.
Technical Reports on Hydrology and Water Resources, No. 86-010Sponsors
The Principal Investigator wishes to acknowledge the technical support provided by the Center for Computing Information and Technology at the University of Arizona. The typing and editing of this report was done by Ms. Corla Thies. Her patience and creativity are greatly appreciated.Collections
Related items
Showing items related by title, author, creator and subject.
-
Basin Scale and Runoff Model ComplexityGoodrich, David Charles; Department of Hydrology & Water Resources, The University of Arizona; Southwest Watershed Research Center (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1990-06)Distributed Rainfall-Runoff models are gaining widespread acceptance; yet, a fundamental issue that must be addressed by all users of these models is definition of an acceptable level of watershed discretization (geometric model complexity). The level of geometric model complexity is a function of basin and climatic scales as well as the availability of input and verification data. Equilibrium discharge storage is employed to develop a quantitative methodology to define a level of geometric model complexity commensurate with a specified level of model performance. Equilibrium storage ratios are used to define the transition from overland to channel -dominated flow response. The methodology is tested on four subcatchments in the USDA -ARS Walnut Gulch Experimental Watershed in Southeastern Arizona. The catchments cover a range of basins scales of over three orders of magnitude. This enabled a unique assessment of watershed response behavior as a function of basin scale. High quality, distributed, rainfall -runoff data was used to verify the model (KINEROSR). Excellent calibration and verification results provided confidence in subsequent model interpretations regarding watershed response behavior. An average elementary channel support area of roughly 15% of the total basin area is shown to provide a watershed discretization level that maintains model performance for basins ranging in size from 1.5 to 631 hectares. Detailed examination of infiltration, including the role and impacts of incorporating small scale infiltration variability in a distribution sense, into KINEROSR, over a range of soils and climatic scales was also addressed. The impacts of infiltration and channel losses on runoff response increase with increasing watershed scale as the relative influence of storms is diminished in a semiarid environment such as Walnut Gulch. In this semiarid environment, characterized by ephemeral streams, watershed runoff response does not become more linear with increasing watershed scale but appears to become more nonlinear.
-
Modeling of Ground-Water Flow and Surface/Ground-Water Interaction for the San Pedro River Basin Part I Mexican Border to Fairbank, ArizonaVionnet, Leticia Beatriz; Maddock, Thomas, III; Department of Hydrology & Water Resources, The University of Arizona (Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1992)Many hydrologic basins in the southwest have seen their perennial streamflows turn to ephemeral, their riparian communities disappear or be jeopardized, and their aquifers suffer from severe overdrafts. Under -management of ground -water exploitation and of conjunctive use of surface and ground waters are the main reasons for these events.
-
Simulative models for the analysis of ground-water flow in Vekol Valley, the Waterman Wash area, and the Bosque area, Maricopa and Pinal Counties, ArizonaMatlock, Daniel T.; Neuman, Shlomo P. (The University of Arizona., 1983)Simulative ground-water flow models were developed for Vekol Valley and the Waterman Wash and Bosque areas for use in evaluating alternatives for developing a ground-water supply for the Ak-Chin Indian Community. Annual recharge to the first two areas is negligible compared to the quantity of water in storage and that proposed to be pumped. The models are based on a three-dimensional, block-centered. finite-difference scheme. The Vekol Valley model was calibrated for steady-state conditions and the Waterman area model for steady-state and transient conditions. An uncalibrated storage-depletion model was developed for the Bosque area. Sensitivity of calibrated heads to changes in transmissivity was also investigated. Simulated water levels for transient conditions in the Waterman Wash area average within 8 feet of measured values for 15 years of analysis and within 15 feet for 24 years. Water-level declines simulated by the Waterman Wash area model average within 17 feet of those measured during 1951-75.