EXPERIMENTAL INVESTIGATION OF SEEPAGE THROUGH HETEROGENEOUS POROUS MEDIA
dc.contributor.author | Mathieu, James T., Jr. | |
dc.contributor.author | Yeh, T.-C. Jim | |
dc.date.accessioned | 2016-06-22T18:28:54Z | |
dc.date.available | 2016-06-22T18:28:54Z | |
dc.date.issued | 1988-10 | |
dc.identifier.uri | http://hdl.handle.net/10150/614168 | |
dc.description.abstract | Five sand tank experiments were conducted to investigate the behavior of unsaturated flow in heterogeneous porous media and to test the recent stochastic theories of Yeh et al. (1985a, b. c) and Mantoglou et al. (1987a, b, c) on flow through unsaturated porous media. The hydraulic properties @(w) and K(0) of the medium and coarse sand used in the experiments were measured with various laboratory columns. Fourteen medium and coarse sands were alternately layered in the 2.38 m long x 1.12 m high x 0.1 m thick sand tank. Water was infiltrated from a point source for three of five experiments and from a channel source for two experiments. An array of 62 tensiometers were used to record the capillary tension head distribution during each experiment. The wetting front profiles for the first experiment show the stratified sand effects both the development and dissipation of preferential flow paths. The experimental results qualitatively support stochastic theory of saturation dependent anisotropy. Three of the five experiments agree with the stochastic result of Yeh et al. (1985a and b) that an increase in the variance of the capillary tension head (soil becomes drier) is proportional to an increase in the mean tension head. | |
dc.description.sponsorship | Financial support for this research was provided by the National Science Foundation (Grant: CEE 819214). | en |
dc.language.iso | en_US | en |
dc.publisher | Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ) | en |
dc.relation.ispartofseries | Technical Reports on Hydrology and Water Resources, No. HWR 88-010 | en |
dc.rights | Copyright © Arizona Board of Regents | en |
dc.source | Provided by the Department of Hydrology and Water Resources. | en |
dc.title | EXPERIMENTAL INVESTIGATION OF SEEPAGE THROUGH HETEROGENEOUS POROUS MEDIA | en_US |
dc.type | text | en |
dc.type | Technical Report | en |
dc.contributor.department | Department of Hydrology & Water Resources, The University of Arizona | en |
dc.description.collectioninformation | This title from the Hydrology & Water Resources Technical Reports collection is made available by the Department of Hydrology & Atmospheric Sciences and the University Libraries, University of Arizona. If you have questions about titles in this collection, please contact repository@u.library.arizona.edu. | en |
refterms.dateFOA | 2018-06-14T18:06:24Z | |
html.description.abstract | Five sand tank experiments were conducted to investigate the behavior of unsaturated flow in heterogeneous porous media and to test the recent stochastic theories of Yeh et al. (1985a, b. c) and Mantoglou et al. (1987a, b, c) on flow through unsaturated porous media. The hydraulic properties @(w) and K(0) of the medium and coarse sand used in the experiments were measured with various laboratory columns. Fourteen medium and coarse sands were alternately layered in the 2.38 m long x 1.12 m high x 0.1 m thick sand tank. Water was infiltrated from a point source for three of five experiments and from a channel source for two experiments. An array of 62 tensiometers were used to record the capillary tension head distribution during each experiment. The wetting front profiles for the first experiment show the stratified sand effects both the development and dissipation of preferential flow paths. The experimental results qualitatively support stochastic theory of saturation dependent anisotropy. Three of the five experiments agree with the stochastic result of Yeh et al. (1985a and b) that an increase in the variance of the capillary tension head (soil becomes drier) is proportional to an increase in the mean tension head. |