• Login
    View Item 
    •   Home
    • Colleges, Departments, and Organizations
    • Hydrology & Atmospheric Sciences
    • Hydrology & Water Resources Technical Reports
    • View Item
    •   Home
    • Colleges, Departments, and Organizations
    • Hydrology & Atmospheric Sciences
    • Hydrology & Water Resources Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    THE HYDROLOGY AND RIPARIAN RESTORATION OF THE BILL WILLIAMS RIVER BASIN NEAR PARKER, ARIZONA

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    HWR-1993-040_w.pdf
    Size:
    10.44Mb
    Format:
    PDF
    Download
    Author
    Harshman, Celina Anne
    Maddock, Thomas III
    Affiliation
    Department of Hydrology & Water Resources, The University of Arizona
    Issue Date
    1993
    Keywords
    Hydrology -- Arizona -- Parker Region.
    Riparian ecology -- Arizona -- Bill Williams River Valley.
    Hydrology -- Arizona -- Bill Williams River Valley.
    Hydrology
    
    Metadata
    Show full item record
    Publisher
    Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ)
    Rights
    Copyright © Arizona Board of Regents
    Collection Information
    This title from the Hydrology & Water Resources Technical Reports collection is made available by the Department of Hydrology & Atmospheric Sciences and the University Libraries, University of Arizona. If you have questions about titles in this collection, please contact repository@u.library.arizona.edu.
    Abstract
    Riparian forests, which support rich biological diversity in the North American southwest, have experienced a sharp decline in the last century. The extent of this decline has been estimated to range from 70% to 95% across the southwest (Johnson and Haight, 1984). The principal components of riparian forests which sustain a broad spectrum of species and describe the overall health of a system are cottonwoods (sp. Populus) and willows (sp. Salix). The importance of cottonwoods is aptly described by Rood et al (1993): "....these trees provide the foundation of the riparian forest ecosystem in semi -arid areas of western North America. Unlike wetter areas to the east and west, a loss of cottonwoods in these riparian areas is not compensated through enrichment from other tree species. If the cottonwoods die, the entire forest ecosystem collapses." Cottonwood and willow species are adversely affected by anthropogenic influences ranging most prominently from the introduction of regulated flows via dams to agricultural clearing, water diversions, livestock grazing, and domestic settlement. These influences effectively alter the system hydrology that the forests rely upon. As the widespread destruction of these forests and the associated irreparable damage to endangered species habitat has come into clear view in the past decade, research efforts have focused upon identifying the ecological needs of riparian systems. The potential of modifying such systems to soften the human impact upon them, in effect presenting further alterations on a hydrologic system to return it to its natural regime, is another component of the research on riparian systems. The Bill Williams River riparian corridor, near Parker, Arizona (Figure 1.1), contains the last extensive native riparian habitat along the lower Colorado River (BWC Technical Committee, 1993). This unique resource was established as the Bill Williams River Management Unit, Havasu National Wildlife Refuge in 1941 and covers 6105 acres along the lower 12 miles of the Bill Williams River (Rivers West, 1990). The Bill Williams Unit is currently managed by the U.S. Fish and Wildlife Service of the U.S. Department of Interior. The U.S. Fish and Wildlife Service also funded this research effort. The lush vegetation corresponding to the wetland conditions along the valley floor sharply contrast with the Sonoran desert landscape of the upper valley walls creating a magnificent picture. The Management Unit terminates at Lake Havasu, which forms the confluence of the Bill Williams and Colorado Rivers. The system provides habitat for a wide variety of species, many of which are endangered or state- listed species, including habitat for neotropical migratory birds. This habitat has undergone serious degeneration during the past quarter century. The recruitment of cottonwood and willow trees has been fatally interrupted by anthropogenic encroachment in the form of the construction of Alamo Dam in 1969 at the head of the Bill Williams River and commercial development along the River.
    Series/Report no.
    Technical Reports on Hydrology and Water Resources, No. 93-040
    Sponsors
    Research and development was supported in part by the U.S. Fish and Wildlife Service. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the officiial policies, either expressed or implied, the United States Government. The authors gratefully acknowledge the efforts of numerous individuals who made this manuscript a reality. Many thanks to the U.S. Fish and Wildlife Service for funding this research and providing for several site visits to the Bill Williams River, to Bob Mac Nish for his kindly but to- the -point review, to Pete Hawkins for advice on Riparian Systems, and to Mike Jones who not only helped developed the ground water flow model, MODXX, used in this research but contributed technical support and advice throughout the modeling effort. Special thanks to Les Cunningham and Steve Cullinan of the U.S. Fish and Wildlife Service for the support of this and on -going research.
    Collections
    Hydrology & Water Resources Technical Reports

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.