• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • Pharmacy Student Research Projects
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • Pharmacy Student Research Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Effect of Drug Formulation on in vitro Performance Indices for Metered-Dose Inhalers with Regards to Varying Mouth-Throat Models

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Fazel, Mohammad
    Myrdal, Paul
    Sheth, Poonham
    Affiliation
    College of Pharmacy, The University of Arizona
    Issue Date
    2013
    Keywords
    Formulation
    in vitro
    Inhalers
    Models
    MeSH Subjects
    Nebulizers and Vaporizers
    Drug Compounding
    In Vitro Techniques
    Advisor
    Myrdal, Paul
    Sheth, Poonham
    
    Metadata
    Show full item record
    Rights
    Copyright © is held by the author.
    Collection Information
    This item is part of the Pharmacy Student Research Projects collection, made available by the College of Pharmacy and the University Libraries at the University of Arizona. For more information about items in this collection, please contact Jennifer Martin, Librarian and Clinical Instructor, Pharmacy Practice and Science, jenmartin@email.arizona.edu.
    Publisher
    The University of Arizona.
    Abstract
    Specific Aims: To elucidate the effect of the use of three different inlet configurations, percent ethanol in formulation, and propellant used on the percent respirable drug and MMAD of aerosolized particles from MDIs that contained beclomethasone dipropionate (BDP). Methods: The inlet configurations assessed in this study were the United States Pharmacopeia (USP) throat, the Alberta idealized mouth-throat replica (biological throat), and a large volume spacer (globe). ACI analyses were conducted on four different MDI formulations with regards to each of the three inlet configurations in quadruplicate. The two hydrofluoroalkane propellants assessed were HFA-134 and HFA-227. All four solution formulations contained 0.3% (w/w) beclomethasone dipropionate (BDP), two of which contained 8% (w/w) ethanol (one each with HFA-134a and HFA-227) and two contained 20% (w/w) ethanol (one each with HFA-134a and HFA-227). All experiments were conducted at a flow rate of 28.3L/min using an actuator with an orifice diameter of 0.29mm and a 50μL metered-valve. After each ACI test, the drug collected on each stage of the impactor was rinsed with known volumes of diluent and quantified by high performance liquid chromatography (HPLC). The MMAD was determined by using DistFit to lognormally fit the ACI data. The resiprable fraction was calculated as the mass of the drug collected on stages 3 through filter of the ACI divided by the total mass of the drug aerosolized. The two-sided student's t-test was the statistical test utilized, with an a priori alpha-value of 0.05. Main Results: The USP and biological throats had significantly lower percent respirable drug compared to the globe regardless of concentration of ethanol or propellant (p<0.05). The MMADs were significantly lower for configurations with the USP and biological throats as compared to the globe (p<0.05). The only formulation with a significant percent respirable drug difference between the USP and biological throats regarding was the 20% ethanol/HFA-227 formulation (20.9+/-0.15 and 16.8+/-1.3 respectively, p=0.005), with the USP throat having the significantly greater percent respirable drug. The USP throat had significantly larger MMADs compared to the biological throat regardless of formulation (p<0.05). For both propellants, the 8% ethanol formulation had significantly greater percent respirable drug compared to the 20% formulation for all three inlets (p<0.05). The 20% ethanol formulations had significantly higher MMADs compared to the 8% ethanol formulations in both the USP throat and globe and with both propellants (p<0.05). Only the 20% ethanol formulations demonstrated a significant difference when varying propellant while keeping all else constant, with the HFA-134a formulations having higher percent respirable drug with all inlets as compared to HFA-227 (p<0.05). When propellant used was varied with all else kept constant, the HFA-227 formulations had significantly higher MMADs compared to the HFA-134a formulations (p<0.05). Conclusion: It was found that significant differences in percent respirable drug and particle size (MMAD) resulting from varying inlet configurations was a function of formulation parameters, most notably, ethanol concentration. The differences may be attributed to factors that increased the time necessary for the evaporation of atomized particles prior to deposition in the impactor, the initial atomized droplet diameter, and/or the likelihood of particle impaction with regards to the mouth-throat inlet utilized. Further assessment is needed to evaluate the correlation of this data with in vivo analyses.
    Description
    Class of 2013 Abstract
    Collections
    Pharmacy Student Research Projects

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.