• Login
    View Item 
    •   Home
    • Conference Proceedings
    • International Telemetering Conference
    • International Telemetering Conference Proceedings, Volume 24 (1988)
    • View Item
    •   Home
    • Conference Proceedings
    • International Telemetering Conference
    • International Telemetering Conference Proceedings, Volume 24 (1988)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Evolutionary Factors in the Development of a Realtime Multiprocessor System

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    ITC_1988_88-072.pdf
    Size:
    192.9Kb
    Format:
    PDF
    Download
    Author
    Trover, William F.
    Affiliation
    Teledyne Controls
    Issue Date
    1988-10
    
    Metadata
    Show full item record
    Rights
    Copyright © International Foundation for Telemetering
    Collection Information
    Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
    Publisher
    International Foundation for Telemetering
    Journal
    International Telemetering Conference Proceedings
    Abstract
    Architectural decisions made three years ago in the design of a high speed preprocessor system for realtime data processing at sustained rates of 200k to 300k parameters per second were driven by the need to provide expansion flexibility and to permit the user to program application algorithms through the use of a high level language. The original design concept was a two bus architecture which would accept and merge data from up to 8 data sources with the required number of parallel computers driven by the realtime processing needs - not the 1.5M wps aggregate throughput capability. Other configuration variables were to enable the use of an optional raw data circular (wrap around) file for intermaneuver or anomaly analysis, the number of analog and discrete outputs for strip chart and visual displays, and the ability to support a wide range of processed data throughputs to one or more host computers. As a result of future defined requirements, the expansion capability ultimately grew to allow up to 30 data sources, 256 analog outputs, and 196 discrete outputs. A concurrent study of the engine and airborne test community showed that in many applications over 50% of the processing was restricted to repetitive computations such as FFTs and first order EU conversions. Although bit slice processors were much faster than general purpose Application Processors (APs), nobody in the user community said they wanted to write microcode to install their application programs. As the first customer's requirements could be easily handled by adding a few APs, the initial system design concentrated only on general purpose processors with provisions being made for the future addition of special purpose digital signal processors to co-reside with the general purpose APs. At the some time, much of the rotary wing test community's data processing was highly floating point intensive so the AP processor was designed with an independent floating point processor using the fastest possible device technology. The original two bus architecture using industry standard Versa and VME buses evolved as the design matured to a six bus architecture capable of supporting up to 60 parallel processors. The use of industry standard buses has permitted successful development of configurations using a wide range of third party processors and peripherals from a variety of sources. Larger system configurations are implemented by a multi-chassis structure with functions arranged so that no realtime bus is unterminated or physically longer than 19 inches. The simultaneous software development supporting these changes and encompassing 25 man-years of work is beyond the scope of this paper and will be covered in a separate publication.
    Sponsors
    International Foundation for Telemetering
    ISSN
    0884-5123
    0074-9079
    Additional Links
    http://www.telemetry.org/
    Collections
    International Telemetering Conference Proceedings, Volume 24 (1988)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.