• Login
    View Item 
    •   Home
    • Conference Proceedings
    • International Telemetering Conference
    • International Telemetering Conference Proceedings, Volume 22 (1986)
    • View Item
    •   Home
    • Conference Proceedings
    • International Telemetering Conference
    • International Telemetering Conference Proceedings, Volume 22 (1986)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    MILLIMETER WAVE RADIO RESPONDER FOR REMOTE SENSING OF SURFACE CONDUCTIVITY AND LASER LIGHT INTENSITY

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    ITC_1986_86-0883.pdf
    Size:
    62.69Kb
    Format:
    PDF
    Download
    Author
    Beffa, James C.
    Ishii, T. Koryu
    Affiliation
    Marquette University
    Issue Date
    1986-10
    
    Metadata
    Show full item record
    Rights
    Copyright © International Foundation for Telemetering
    Collection Information
    Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
    Publisher
    International Foundation for Telemetering
    Journal
    International Telemetering Conference Proceedings
    Abstract
    A millimeter wave radio responder was evaluated as a remote sensor of surface conductivity and laser light intensity. A 10 mm CdSe photocell was illuminated by a 1/4 mW, 632.8 nm He-Ne laser light. The photocell was not connected to anywhere. The terminals were left open. The photocell was interrogated by a remotely placed millimeter wave radio responder operated with the frequency of 69.6 GHz and the transmitter power of 3 mW. The millimeter wave radio responder was able to sense the radio echo from the surface of the photocell. The laser illuminated area on the photocell was only 2.86% of the entire active area, yet the radio responder output showed up to 15 dB difference between the laser spot on and off from the target. The minimum reflected signal change observed was 0.002 dB by tilting the target 20 degrees from the normal incidence of the millimeterwave beam. This was translated to be 0.025% of surface conductance change on the target. This remote sensing was done using an instrumentation of the sensitivity of !40 dBm. Thus, the usefulness and advantage of employing a millimeter wave radio responder for remote sensing of minute change in the surface conductivity and/or the laser light intensity have been demonstrated in this research.
    Sponsors
    International Foundation for Telemetering
    ISSN
    0884-5123
    0074-9079
    Additional Links
    http://www.telemetry.org/
    Collections
    International Telemetering Conference Proceedings, Volume 22 (1986)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.