DEMAND ACCESS SATELLITE COMMUNICATION SYSTEMS
dc.contributor.author | Mohanty, Nirode C. | |
dc.date.accessioned | 2016-07-05T23:01:54Z | |
dc.date.available | 2016-07-05T23:01:54Z | |
dc.date.issued | 1985-10 | |
dc.identifier.issn | 0884-5123 | |
dc.identifier.issn | 0074-9079 | |
dc.identifier.uri | http://hdl.handle.net/10150/615594 | |
dc.description | International Telemetering Conference Proceedings / October 28-31, 1985 / Riviera Hotel, Las Vegas, Nevada | en_US |
dc.description.abstract | A demand access Satellite Communication System for multiple users has been analyzed. A number of channels, m 1, of each satellites are necessary to coordinate the self-served users to allow access to a satellite having s channels. m depends upon traffic intensity and number of top priority users. A waiting time period for a Poisson arrival and exponential holding time M/M/s system for “preemptive resume” discipline has been derived. There is a significant reduction in waiting time in accessing the channel and in transmission time over other access schemes. There is no waiting time for a top priority user, either in accessing the channel or in transmitting its messages, when the appropriate number of order wires is used. | |
dc.description.sponsorship | International Foundation for Telemetering | en |
dc.language.iso | en_US | en |
dc.publisher | International Foundation for Telemetering | en |
dc.relation.url | http://www.telemetry.org/ | en |
dc.rights | Copyright © International Foundation for Telemetering | en |
dc.title | DEMAND ACCESS SATELLITE COMMUNICATION SYSTEMS | en_US |
dc.type | text | en |
dc.type | Proceedings | en |
dc.contributor.department | The Aerospace Corporation | en |
dc.identifier.journal | International Telemetering Conference Proceedings | en |
dc.description.collectioninformation | Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection. | en |
refterms.dateFOA | 2018-09-11T14:21:38Z | |
html.description.abstract | A demand access Satellite Communication System for multiple users has been analyzed. A number of channels, m 1, of each satellites are necessary to coordinate the self-served users to allow access to a satellite having s channels. m depends upon traffic intensity and number of top priority users. A waiting time period for a Poisson arrival and exponential holding time M/M/s system for “preemptive resume” discipline has been derived. There is a significant reduction in waiting time in accessing the channel and in transmission time over other access schemes. There is no waiting time for a top priority user, either in accessing the channel or in transmitting its messages, when the appropriate number of order wires is used. |