Show simple item record

dc.contributor.authorMohanty, Nirode C.
dc.date.accessioned2016-07-05T23:01:54Z
dc.date.available2016-07-05T23:01:54Z
dc.date.issued1985-10
dc.identifier.issn0884-5123
dc.identifier.issn0074-9079
dc.identifier.urihttp://hdl.handle.net/10150/615594
dc.descriptionInternational Telemetering Conference Proceedings / October 28-31, 1985 / Riviera Hotel, Las Vegas, Nevadaen_US
dc.description.abstractA demand access Satellite Communication System for multiple users has been analyzed. A number of channels, m 1, of each satellites are necessary to coordinate the self-served users to allow access to a satellite having s channels. m depends upon traffic intensity and number of top priority users. A waiting time period for a Poisson arrival and exponential holding time M/M/s system for “preemptive resume” discipline has been derived. There is a significant reduction in waiting time in accessing the channel and in transmission time over other access schemes. There is no waiting time for a top priority user, either in accessing the channel or in transmitting its messages, when the appropriate number of order wires is used.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.titleDEMAND ACCESS SATELLITE COMMUNICATION SYSTEMSen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentThe Aerospace Corporationen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-09-11T14:21:38Z
html.description.abstractA demand access Satellite Communication System for multiple users has been analyzed. A number of channels, m 1, of each satellites are necessary to coordinate the self-served users to allow access to a satellite having s channels. m depends upon traffic intensity and number of top priority users. A waiting time period for a Poisson arrival and exponential holding time M/M/s system for “preemptive resume” discipline has been derived. There is a significant reduction in waiting time in accessing the channel and in transmission time over other access schemes. There is no waiting time for a top priority user, either in accessing the channel or in transmitting its messages, when the appropriate number of order wires is used.


Files in this item

Thumbnail
Name:
ITC_1985_85-0404.pdf
Size:
7.521Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record