Show simple item record

dc.contributor.authorYeh, Tian-Chyi J.
dc.contributor.authorYe, Ming
dc.contributor.authorKhaleel, Raziuddin
dc.date.accessioned2016-07-07T22:40:33Z
dc.date.available2016-07-07T22:40:33Z
dc.date.issued2004-10
dc.identifier.urihttp://hdl.handle.net/10150/615768
dc.description.abstractKnowledge of unsaturated zone hydraulic properties is critical for many environmental and engineering applications. Various stochastic methods have been developed during the past two decades to estimate the effective unsaturated hydraulic properties. Independent of these stochastic methods, we develop in this paper a practical approach to estimate the three-dimensional (3 -D) effective unsaturated hydraulic conductivity tensor using spatial moments of 3-D snapshots of a moisture plume under transient flow conditions. approach hydraulic hydraulic Application of the new to a field site in southeastern Washington State yields an effective unsaturated conductivity tensor that exhibits moisture- dependent anisotropy. The effective conductivities compare well with laboratory- measured unsaturated hydraulic conductivity data from small core samples; they also reproduce the general behavior of the observed moisture plume at the site. We also define a moisture diffusivity length concept which we use in conjunction with estimated correlation scales of the geological media at the field site to explain deviations between the observed and simulated plumes based on the derived effective hydraulic properties.
dc.language.isoen_USen
dc.publisherDepartment of Hydrology and Water Resources, University of Arizona (Tucson, AZ)en
dc.relation.ispartofseriesTechnical Reports on Hydrology and Water Resources, No. 04-02en
dc.rightsCopyright © Arizona Board of Regentsen
dc.sourceProvided by the Department of Hydrology and Water Resources.en
dc.titleEstimation of effective unsaturated hydraulic conductivity tensor using spatial moments of observed moisture plumeen_US
dc.typetexten
dc.typeTechnical Reporten
dc.contributor.departmentDepartment of Hydrology & Water Resources, The University of Arizonaen
dc.description.collectioninformationThis title from the Hydrology & Water Resources Technical Reports collection is made available by the Department of Hydrology & Atmospheric Sciences and the University Libraries, University of Arizona. If you have questions about titles in this collection, please contact repository@u.library.arizona.edu.en
refterms.dateFOA2018-05-17T19:23:27Z
html.description.abstractKnowledge of unsaturated zone hydraulic properties is critical for many environmental and engineering applications. Various stochastic methods have been developed during the past two decades to estimate the effective unsaturated hydraulic properties. Independent of these stochastic methods, we develop in this paper a practical approach to estimate the three-dimensional (3 -D) effective unsaturated hydraulic conductivity tensor using spatial moments of 3-D snapshots of a moisture plume under transient flow conditions. approach hydraulic hydraulic Application of the new to a field site in southeastern Washington State yields an effective unsaturated conductivity tensor that exhibits moisture- dependent anisotropy. The effective conductivities compare well with laboratory- measured unsaturated hydraulic conductivity data from small core samples; they also reproduce the general behavior of the observed moisture plume at the site. We also define a moisture diffusivity length concept which we use in conjunction with estimated correlation scales of the geological media at the field site to explain deviations between the observed and simulated plumes based on the derived effective hydraulic properties.


Files in this item

Thumbnail
Name:
HWR-2004-020.pdf
Size:
3.523Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record