Show simple item record

dc.contributor.authorMotoike, Toshiyuki
dc.contributor.authorLong, Jeffrey M.
dc.contributor.authorTanaka, Hirokazu
dc.contributor.authorSinton, Christopher M.
dc.contributor.authorSkach, Amber
dc.contributor.authorWilliams, S. Clay
dc.contributor.authorHammer, Robert E.
dc.contributor.authorSakurai, Takeshi
dc.contributor.authorYanagisawa, Masashi
dc.date.accessioned2016-07-15T01:14:52Z
dc.date.available2016-07-15T01:14:52Z
dc.date.issued2016-05-24
dc.identifier.citationMesolimbic neuropeptide W coordinates stress responses under novel environments 2016, 113 (21):6023 Proceedings of the National Academy of Sciencesen
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.doi10.1073/pnas.1518658113
dc.identifier.urihttp://hdl.handle.net/10150/616999
dc.description.abstractNeuropeptide B (NPB) and neuropeptide W(NPW) are endogenous neuropeptide ligands for the G protein-coupled receptors NPBWR1 and NPBWR2. Here we report that the majority of NPW neurons in the mesolimbic region possess tyrosine hydroxylase immunoreactivity, indicating that a small subset of dopaminergic neurons coexpress NPW. These NPW-containing neurons densely and exclusively innervate two limbic system nuclei in adult mouse brain: the lateral bed nucleus of the stria terminalis and the lateral part of the central amygdala nucleus (CeAL). In the CeAL of wild-type mice, restraint stress resulted in an inhibition of cellular activity, but this stress-induced inhibition was attenuated in the CeAL neurons of NPW-/- mice. Moreover, the response of NPW-/- mice to either formalin-induced pain stimuli or a live rat (i. e., a potential predator) was abnormal only when they were placed in a novel environment: The mice failed to show the normal species-specific self-protective and aversive reactions. In contrast, the behavior of NPW-/- mice in a habituated environment was indistinguishable from that of wildtype mice. These results indicate that the NPW/NPBWR1 system could play a critical role in the gating of stressful stimuli during exposure to novel environments.
dc.description.sponsorshipKeck Foundation; Perot Family Foundation; Exploratory Research for Advanced Technology of Japan Science and Technology Agency; World Premier International Research Center Initiative from the Ministry of Education, Culture, Sports, Science and Technology, Japan; Intramural Research Program of the NIHen
dc.language.isoenen
dc.publisherNATL ACAD SCIENCESen
dc.relation.urlhttp://www.pnas.org/lookup/doi/10.1073/pnas.1518658113en
dc.rightsCopyright © 2016 The Authors. Published by National Academy of Sciences.en
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectamygdalaen
dc.subjectfearen
dc.subjectpainen
dc.subjectdopaminergicen
dc.subjectmouseen
dc.titleMesolimbic neuropeptide W coordinates stress responses under novel environmentsen
dc.typeArticleen
dc.contributor.departmentUniv Arizona, Dept Med, Arizona Resp Ctren
dc.identifier.journalProceedings of the National Academy of Sciencesen
dc.description.noteAuthors retain copyright and extensive rights to use and reuse their work. These rights include, on acceptance for publication by PNAS, depositing the final author manuscript in an institutional repository, provided that the PNAS-formatted PDF is not used and a link to the article on the PNAS website is included.
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en
dc.eprint.versionFinal accepted manuscripten
refterms.dateFOA2018-06-23T16:12:52Z
html.description.abstractNeuropeptide B (NPB) and neuropeptide W(NPW) are endogenous neuropeptide ligands for the G protein-coupled receptors NPBWR1 and NPBWR2. Here we report that the majority of NPW neurons in the mesolimbic region possess tyrosine hydroxylase immunoreactivity, indicating that a small subset of dopaminergic neurons coexpress NPW. These NPW-containing neurons densely and exclusively innervate two limbic system nuclei in adult mouse brain: the lateral bed nucleus of the stria terminalis and the lateral part of the central amygdala nucleus (CeAL). In the CeAL of wild-type mice, restraint stress resulted in an inhibition of cellular activity, but this stress-induced inhibition was attenuated in the CeAL neurons of NPW-/- mice. Moreover, the response of NPW-/- mice to either formalin-induced pain stimuli or a live rat (i. e., a potential predator) was abnormal only when they were placed in a novel environment: The mice failed to show the normal species-specific self-protective and aversive reactions. In contrast, the behavior of NPW-/- mice in a habituated environment was indistinguishable from that of wildtype mice. These results indicate that the NPW/NPBWR1 system could play a critical role in the gating of stressful stimuli during exposure to novel environments.


Files in this item

Thumbnail
Name:
PNAS-2016-Motoike- Submission ...
Size:
9.611Mb
Format:
PDF
Description:
Final Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record